Single Phase CFD Simulation and Experimental Validation for Advanced Nuclear Components: Multi-scale Flow Structure Measurements

Yassin A Hassan Elvis Dominguez-Ontiveros

Texas A&M University

XCFD4NRS

Experiments and CFD Code Applications to Nuclear Reactor Safety Grenoble, France 10-12 September 2008

Outline

 Introduction ---Validation—Validation---Validation Multiscale Phenomena Local Measurements

 Particle Image Velocimetry Matching Refractive Index Experimental set-up

- Measurements in Various Reactor Components Pebble Bed Packed Reactor Lower Plenum Mixing of GCR Bundles
- Conclusion

Introduction

In the Advanced Gas Cooled Pebble Bed Reactors for nuclear power generation, the fuel is presented in the form of spherical coated particles.

The energy transfer phenomenon requires detailed understanding of the flow and temperature fields around the spherical fuel pebbles.

 Many of the macroscopic processes that affect material transport in porous media are manifestations of the flow behavior of the system at the microscopic scale (at the scale of an individual pore volume)

• Dispersion, for example, is the result of the cumulative effects of a number of micro-scale phenomena, including the mixing caused by solid obstructions in the flow path, the incomplete connectivity of the medium, eddies in the medium, and recirculation caused by regional pressure gradients.

 Predictive macroscopic transport theory uses volume averages of micro-scale flow.

 Multipoint measurements with spatial resolution are necessary to permit visualization of complex flow patterns and to provide data at high enough spatial density to allow volume averaging

Particle Image Velocimetry (PIV)

- Optical method (Non-intrusive)
- Velocity fields
- Spatial resolution
- Time resolution (DPIV)
- Capability of studying two-phase
- flows

Frame 1

Velocity field

PMMA beads

D/d=6.6

56 mm

Square column

L/D=14.5

Refractive Index Solids

Material	Refractive Index	Reference
Boroscilicate (Pyrex)	1.47-1.49	Budwig
Optical Glasses	1.45-1.96	Budwig
Acrylic (PMMA)	1.49	Budwig
Polycarbonate	1.58	Budwig
FEP	1.33	-
Teflon AF	1.29-1.31	-
K8 glass	1.51	Pokusaev
Styrene - divinyl-benzene	1.5903	Adrian
Silica gel	1.452	Adrian
Fused quartz	1.4584	-

Matching Refractive Index

Ethyl-Benzyl

Viscosity

Density

Surface tension

Others

Diethyl-phthalate

Air

Para-cymene

Air

Water

P-cymene

Experimental set-up

- Polymethyl methacrylate square channel (3.1 cm x 3.1 cm x 45cm)
- Close loop
- 4.7 mm diameter PMMA beads
- Para-Cymene 99% as working fluid
- 6 µm particle seeding
- High speed/ high resolution camera
 (4800 fps)
- Measurements at the center plane

IV.

Multiscale measurements

Flow behavior for Re=500 (Pore1)

Play

Flow behavior for Re=50 (Pore 3)

Flow behavior for Re=500 (pore 3)

Pore representation of second viewing area

Re=50

Re=500

Conclusions

- Effective use of non-invasive methods in packed beds (pore level).
- Successful determination of interstitial velocity field
- Flow visualization allows a better understanding of physical phenomena involved.
- Working fluid allows the possibility of mass and heat transfer studies in packed bed reactors.
- •Evidence of recirculation zones at pore level suggest the prediction of "micro-hot-spots" in pebble bed reactors.

Questions?

Experimental set-up

