

The Role of CFD in NPP Safety

Victor Teschendorff (GRS)

XCFD4NRS

Experiments and CFD Code Applications to Nuclear Reactor Safety

OECD/NEA & IAEA Workshop

Grenoble, France 10 – 12 September 2008

XCFD4NRS Grenoble Sept. 2008

Contents

- Safety issues
- Validation and user influence
- International co-operation
- Conclusion

CSNI Safety Issues and Topics (1/3)

- Shrinking nuclear infrastructure
 - Knowledge Management
 - Experimental Facility Loss
- Increased public expectation on safety in use of nuclear energy
 - Use of Risk-Informed Regulation
 - Transparent technical basis for safety assessment

CSNI Safety Issues and Topics (2/3)

- Industry initiatives to improve economics and safety performance
 - Management Strategies
 - Maintaining Safety Margins
 - Fuel and Fuel Cycle Safety
 - Maintaining Safety Culture

CSNI Safety Issues and Topics (3/3)

- Necessity to ensure safety over plant lifecycle
 - Ageing management
 - New risk perspective and safety requirements
 - Risk management across operating modes
- New reactors and new technology
 - Digital technology
 - New materials and fabrication technologies
 - New concepts of operation
 - New methods and tools

SESAR/SFEAR: TH Safety Issues with relevance for maintaining key research facilities (1/2)

Issue	Safety relevance of issue	State of knowledge on issue
Boron dilution	Medium	High
Passive safety system performance	High	Medium
Non-pipe breaks	Medium	Low
S. G. tube rupture	High	High
Stability and power oscillations	High	Medium
ECCS strainer clogging	High	Medium
Pressure tube reactor T/H	High	Medium

XCFD4NRS Grenoble Sept. 2008

SESAR/SFEAR: TH Safety Issues with relevance for maintaining key research facilities (2/2)

Issue	Safety relevance of issue	State of knowledge on issue
Two-phase natural circulation	High	Medium
Thermal stratification	Low	Medium
Thermal cycling	Low	Medium
Moderator T/H	Medium	High
3-D core flow distribution	Medium	Medium
Downcomer flow distribution	Low	Medium
Accidents initiated during shutdown	High	Medium

Enlarged Role of CFD for NRS

- CFD has a wider field of application in NRS than coolant system T/H, e. g.
 - Severe accident phenomena in the containment,
 - H₂ distribution and combustion
 - Aerosol and FP distribution
 - Fibre material in the sump
 - Fires in confined space or arrangements of rooms
 - Melt behaviour in vessel lower head
- Education & Training: Advanced simulation methods
- Link to non-nuclear industries

Simulation of H₂-Combustion with CFX

- Simulation of turbulent flame propagation with CFX
- Validation of combustion models
- Successful post-test calculations for experiments in Russian RUT facility and in German Battelle-Model-Containment

Clogging Issue: Particle Transport in the Sump

Experimental and modelling activities in progress for characterizing particles and their transport in sump water flows, including entrainment of air

Technical Safety Organisations (TSOs)

European TSO Network

- TSOs are public organisations that
 - perform evaluations on nuclear safety and the radiation protection in a regulatory background
 - assure independence of technical judgements
- Technical Safety Organisations are committed to perform safety research. The TSO Concept explicitly states among the required characteristics that "a TSO maintains an R&D programme allowing the development of new knowledge and techniques in support of its missions, and an independence of judgement from licensees".

Extensive Validation Necessary for Accepting CFX for Safety-Cases

- Systematic validation on basic experiments, SETs and Its -> Validation matrix covering phenomena and scale
- Importance of preserving the link to large existing experimental data base
 - Integral system tests, e. g. BETHSY, PKL, LSTF, LOFT
 - Large SETs, e. g. UPTF
 - Empirical pressure loss and heat transfer correlations

ECC-injection, time = 45 s

UPTF TRAM C Experiment: CFX Calculation

Top and bottom view of the lower plenum mesh

Reducing the User Influence

- Previous assessment of code predictions, e. g. benchmarks, ISPs, uncertainty studies, identified the "code user effect" as a major source of uncertainty
- A large part of the user effect could be traced back to nodalisation, esp. for coarse 3D or quasi-3D volume-andjunction arrangements
- CFD should contribute to mitigate this effect
- User effect remains important: high sensitivity to boundary conditions, choice of turbulence model, etc.
- BPGs have limitations in practice

WWER-440 Containment

Experimental Facility ThAl

- ThAI-Facility:
 - Height: 9.2 m
 - Diameter: 3.2 m
 - Volume: 60 m³
 - Internals: Inner cylinder, blower, condensate tray
- Experiments for gas distribution stratification temperature condensation combustion, aerosols, iodine

[Fig.: Becker-Technologies]

Test TH-18: Gas injection at high elevation

- Structured grids with 166.000 to 1.188.000 elements
- Mass flow at blower exit: 4.47 kg/s
- Different turbulence models used (k-ε, SST, SSG)

Comparison of discretisation error and calculation time

Investigating the Influence of Turbulance Models

- Variation of turbulence mode (2-equation models SST and k-ε)
- Variation of parameters (e. g. turbulent Sc-no., productlimiter etc.)
- Discussing the results with code developers and users

Test TH-20: break-up of stratified layer by a jet

- Test starts from a stable He-layer
- Jet from the blower erodes the layer
- He-concentrations measured at various locations and compared to calculation

CFX-Simulation of ThAI Vessel

- Blower not simulated, velocity profile at blower exit given as boundary condition
- Grid of 280.000 cells
- Grid variations show that refinement would be necessary, however, computing time is limiting

Questions to CFD Application

- CFD for everything? High effort in generating problem dependent models and speed of computation set limits; coupling with system scale or medium scale codes required
- One unique CFD code sufficient?
 - two-phase modelling not yet consolidated; benchmarking several codes has its merits
 - dedicated tools for specific problem areas will remain, e. g. electrical cabinet fires, fire-ball after aircraft crash
- Independence of safety assessment when using "commercial" codes?
 - User should know, the validation basis of models and limitations of applicability
 - BPGs must be applicable, uncertainty should be quantified

PWR Containment

XCFD4NRS Grenoble Sept. 2008

Distribution of Air, Vapour and H₂

Generating the computational grid for a PWR containment (Konvoi type) is resource consuming

Co-operation

Huge task of developing, validating and sharing user experience requires a co-ordinated approach:

- Domestic, e. g. German CFD-network
- Europe:
 - Code platform NURESIM
 - SNE-TP: Strategic Research Agenda
 - OECD: Follow-up to GAMA activities
 - Sustainable forms of co-operation necessary

German CFD-Network & International Observers NZG IRSN AREVA VATTENFALL Forschungszentrum Rossendorf IKET Partners + Observers Institut für Kern- und Energietechnik Forschungszentrum Karlsruhe Lehrstuhl für Thermische Kraftanlagen IRS Institut für Reaktorsicherheit THERMODYNAMIN Forschungszentrum Karlsruhe Lehrstuhl für Thermodynamik Universität Stuttgart Gesellschaft für Anlagen- und IKE Reaktorsicherheit mbH Institut für Kernenergetik und Energiesysteme Computational Fluid DynamiX

- NURESIM Project: basis towards the target with first significant possibilities
- NURESP: consolidation + extension
- NURENEXT: confirmation + rationalization + further extension

Sustainable Nuclear Energy Technology Platform (SNE-TP)

Launched in Brussels on 21/09/07

> A vision report endorsed by 35 European organisations

www.snetp.eu

Sustainable Nuclear Energy Technology Platform (SNE-TP)

But also, cross-cutting topics

Conclusion

- CFD is expected to resolve a number of present safety issues
- CFD will play an important role in designing future NPPs
- Accepting CFD for demonstrating safety requires thorough validation, including the existing large data base
- Attention has to be paid to the user effect by applying BPGs and uncertainty evaluation
- The huge task for developing, validating and applying CFD calls for sharing work and experience by sustainable forms of co-operation