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Abstract 
 

In design studies of Japanese sodium-cooled fast reactors, a compact size reactor vessel is expected to 

be employed for economical advantages.  However, such a design makes coolant velocity higher and 

may result in occurrence of gas entrainment (GE) phenomena.  Since the GE is highly non-linear and 

too difficult to predict its onset condition by theoretical methods, we are developing a high-precision 

CFD method to evaluate the GE accurately.  The CFD method is formulated on unstructured meshes 

to establish accurate geometric modeling of complicated reactor systems.  As for two-phase flow 

simulations, a high-precision volume-of-fluid algorithm was employed and newly formulated on 

unstructured meshes.  In the formulation process, a volume-conservative algorithm and a new 

formulation establishing the mechanical balance between pressure and surface tension were introduced.  

The developed CFD method was verified by solving well-known driven-cavity and Zalesak’s slotted-

disk rotation problems to show the simulation accuracy.  Then, we simulated a rising bubble in liquid 

under Bhaga et al’s experimental conditions.  As a result, the developed method showed good 

agreement with the experiment.  Finally, the developed method was validated by simulating the GE 

phenomena in the basic experiment.  The developed method succeeded in reproducing the occurrence 

of the GE under the experimental GE condition. 

 

1.   INTRODUCTION 

Fast breeder reactors (FBRs) are located as one of the possible energy source in the future, with the 

object of not only effective use of resources but also environmental conservation.  In Japan, a sodium-

cooled fast reactor (JSFR) was selected as a possible option due to its high competitiveness in power 

costs (Ichimiya, 2003) and the fast reactor cycle technology development (FaCT) project has been 

conducted by JAEA and related organizations.  As an important part of the FaCT project, more 

compact reactor vessel have been studied to enhance the economical competitiveness of the JSFR 

(Kimura, 2005).  However, such a design concept may result in occurrence of cover gas entrainment 

(GE) from free surface because coolant velocity in the primary system becomes larger and the larger 

coolant velocity can induce free surface fluctuation in upper plenum region of the reactor vessel.  

Since bubbles entrained to the coolant due to the GE might cause power disturbance when they go 

through the reactor core, the GE must be prevented from occurring in the JSFR for a stable operation. 

The GE phenomena have been studied experimentally and theoretically in many years (Maier, 1998).  

In those studies, onset conditions of the GE were investigated using experimental systems consisting 

of reservoir tanks or main pipes with branches (suction pipes).  From the experimental results, the 

correlation of the onset condition was formed as an equation of Froude number (Fr) and branch 

diameter (Zuber, 1980) and the equation is widely accepted among the researchers.  However, some 

experimental results disagreeing with the equation were reported for the vortical type GE (Daggett, 

1974) because effects of Reynolds or Weber numbers become significant in the vortical type GE.  

Also in GE studies for the FBR systems, experimental results showed that the onset condition of the 

vortical type GE was dominated by the liquid velocity itself, not the Fr number (Eguchi, 1984).  

Therefore, it can be expected that the vortical type GE needs special treatment to predict its onset 

condition.  In such cases, full-scale experiments can be a reliable way to evaluate the onset condition 
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of the GE in each system.  However, considering very high costs and difficulties in measurements, 

full-scale experiments may not be the best way to evaluate the GE.  Recently, numerical simulations 

can be considered to be promising ways as substitutions of the full-scale experiments owing to the 

progress of computer systems and numerical methods. 

In this paper, we develop and validate a high-precision CFD method to evaluate the GE phenomena 

accurately.  The CFD method is formulated on unstructured meshes to establish accurate geometric 

modeling of complicated reactor systems and to simulate complicated flow pattern accurately in the 

reactor systems.  As a two-phase flow simulation method, a volume-tracking algorithm based on a 

high-precision volume-of-fluid, namely PLIC (Piecewise Linear Interface Calculation, Young, 1982), 

is employed and newly formulated on unstructured meshes based on the conventional formulations on 

structured meshes.  The developed CFD method is verified by solving well-known driven-cavity and 

Zalesak’s slotted-disk rotation (Zalesak, 1979) problems to show that our CFD method has 

comparable or higher simulation accuracy than conventional high-precision methods.  We also 

formulate a new volume-conservative algorithm establishing perfect volume conservation for each 

phase (gas and liquid phases).  In addition, new algorithms were introduced to velocity and pressure 

calculation procedures of the CFD method.  We show that the collocated variable arrangement 

employed in our CFD method often causes instabilities resulting in unphysical solutions.  By careful 

investigations of the instabilities, we conclude that the unphysical behaviors were induced by 

inappropriate calculations of momentum and velocity-pressure coupling near gas-liquid interface.  

Therefore, new mechanistic formulations are introduced to improve the unphysical behaviours.  For 

the momentum equation, each phase’s velocities near the interface are defined independently using 

volume fraction values, instead of being calculated from momentum and density values at each mesh 

cell (like conventional methods).  For the velocity-pressure coupling equation, we focus on a 

mechanical balance condition between pressure and surface tension and formulate localized pressure 

gradient calculation procedure.  Then, the CFD method is applied to rising bubble problem for the 

validation of the adequacy on dynamic gas-liquid two-phase flow simulations.  The parametric 

simulations are conducted on Morton numbers and the simulation results of rising bubble shapes are 

compared to the experimental results.  Finally, the CFD method is validated by simulating the GE in 

Okamoto’s basic GE experiment (Okamoto, 2004). 

 

2.   FORMULATION OF CFD METHOD 

2.1 FLOW CALCULATION ON UNSTRUCTURED MESHES 

For numerical simulations on unstructured meshes, the collocated variable arrangement is usually 

employed (e.g. Barth, 1989).  Therefore, we also employed the collocated variable arrangement and 

defined all variables at centers of mesh cells.  Then, the finite-volume discretizations were conducted 

for basic equations, namely the Navier-Stokes (N-S) and the Poisson equations.  In addition, the 

unsteady, advection and diffusion terms in the N-S equation were discretized by the first order Euler 

explicit, the second order upwind and the second order center schemes, respectively.  It should be 

noted that the second order center scheme was constructed using the deferred-correction method 

(Muzafefija, 1994) in our study.  The velocity-pressure coupling is achieved by the SMAC algorithm 

(Amsden, 1970).  The second order upwind scheme was formulated as: 1) vertex values are estimated 

as weighed averages of cell (center) values (shown in Fig. 1(a)); 2) face values are interpolated using 

vertex values; 3) gradient values at cell centers are evaluated by Gauss-Green theorem (Eq. (1)); and 

4) fluxes through faces from upwind cells to downwind cells are calculated using cell values and 

gradient values (Eq. (2)).  In Fig. 1(a), each triangle shows mesh cells and values numbered from φ1 to 
φ6 show cell values.  Vectors numbered from 1vr

r
 to 6vr

r
 are connecting each cell centers and the vertex.  

Those vectors are used to calculate weights for each cell value when the vertex value is estimated as 

the weighted average of the cell values.  This procedure of the weighted averaging was proposed by 

Kim et al (2003) and is considered to lead more accurate fluxes on faces than conventional simpler 

procedures.  Equations (1) and (2) are written as 

( ) 1 1
f fc

f

dA A
V V

φ φ φ∑∇ = = ∑∫
r r

,         (1) 
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( )f c cfc
rφ φ φ= + ∇ ⋅
r

,                (2) 

where φ contains velocity, pressure and volume fraction values.  V is a cell volume and A
r
 is a face 

vector indicating each face area by its norm and face normal direction.  cfr
r

 is a vector connecting cell 

and face centers in a upwind cell (shown in Fig. 1(b)).  Subscripts v, c and f indicates vertex, cell and 

face values, respectively.  Summation in Eq. (1) is conducted for every faces on a cell. 

 

 

 

 

 

 

 

 

(a)     (b) 

Fig. 1:  Schematic View of Second Order Upwind Scheme on Unstructured Mesh: (a) Weighted 

Averaging to Estimate Vertex Value, (b) Flux Calculation on Mesh Cell Face 

2.2 HIGH-PRECISION VOLUME-OF-FLUID METHOD ON UNSTRUCTURED 

MESHES 

For two-phase flow simulations, the transport equation of the volume fraction defined as 

( ) 0
f

uf f u
t

∂
+∇⋅ − ∇ ⋅ =

∂
r r

,              (3) 

where f is volume fraction which changes from zero to unity and u
r
is velocity vector, is solved.  The 

volume fraction indicates mesh cell properties, i.e., mesh cell is filled with liquid if f is unity, filled 

with gas if f is zero and the interface is located in the cell if f is between zero and unity.  In the 

procedures of the PLIC method: 1) interfacial gradient vectors n
r
 at each interfacial cell are calculated 

by the volume fraction distributions around the interfacial cell; 2) interfaces in each interfacial cell are 

reconstructed utilizing piecewise linear planes; 3) advection fluxes of the volume fraction through 

each faces are calculated based on locations of reconstructed interfaces; and 4) the volume fraction 

distributions at next time level are determined. 

In our CFD method, the interfacial gradient vector is calculated by the Gauss-Green theorem (shown 

in Section 2.1) based on given volume fraction distributions.  Then, the interface reconstruction is 

conducted using the calculated interfacial gradient vectors.  The interface is reconstructed as the 

piecewise linear plane normal to the interfacial gradient vector and dividing the interfacial cell into 

two regions (liquid and gas) that are consistent with the volume fraction of the interfacial cell.  In 

general, the reconstruction is conducted by the Newton-Raphson method (iterative method) (Rider, 

1998).  However, the direct calculation method (non-iterative method) in which a cubic equation was 

solved for the reconstruction was developed on the structured mesh and reported to lead more accurate 

solution with shorter calculation time (Scardvelli, 2000).  This direct method was already extended to 

two-dimensional unstructured meshes to make calculation time shorter also on unstructured meshes 

(Yang, 2006).  We developed a new direct calculation method for three-dimensional unstructured 

meshes.  For calculations of advection fluxes through faces, the multi-dimensional method was 

employed instead of the conventional operator-splitting method because the multi-dimensional method 

was reported to lead more accurate solutions than the operator-splitting method (Pilliod, 1998). 

In the multi-dimensional advection of the volume fraction, an undershoot (< 0) or overshoot (> 1) of 

the volume fraction may occur when net outflow quantity of the volume fraction from a mesh cell 

overcomes the initial volume fraction of the cell (in the case of the undershoot).  In general, the 

undershoot or overshoot is eliminated by clipping the negative value or the value over unity, 

respectively.  However, this clipping procedure changes the total volume of each phase and the 

volume conservation is not satisfied.  In our CFD method, to formulate a physically suitable correction 

method for the undershoot or overshoot, the additional formulation was introduced to the advection 

calculation of the volume fraction.  Namely, if the undershoot or overshoot of the volume fraction 
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occurred in a mesh cell after the advection calculation, the advection fluxes through each face are 

corrected to eliminate the undershoot or overshoot.  The volume fraction at new time level is 

determined using the corrected advection fluxes.  In this paper, the correction method for the 

undershoot is presented but the overshoot can be corrected by similar manner.  When the undershoot 

occurs in a mesh cell, the initial volume fraction in the cell is smaller than the net outflow flux from 

the cell.  This relationship is written as 
* _ 1 2 0nf f Adv In Adv Adv= + − − < ,                    (4) 

where f
n
 is the initial volume fraction, f* is the preliminary volume fraction (negative value), Adv_In is 

the net inflow flux, Adv1 and Adv2 are the outflow fluxes through faces 1 and 2, respectively (in the 

case of two outflow faces).  All these values are normalized by the cell volume.  Since it is assumed 

that Adv_In is not changed by the correction method (this assumption will be discussed below), only 

Adv1 and Adv2 are corrected to eliminate the undershoot.  For that purpose, the advection fluxes are 

reduced as 

( )*1 1 1 1 2Adv Adv f coef coef coef= + + , 

( )*2 2 2 1 2Adv Adv f coef coef coef= + + ,                   (5) 

where coef1 and coef2 are positive values and correction coefficients for Adv1 and Adv2, respectively.  

The coefficients are calculated by considering dominance of each outflow flux on the net outflow flux. 

Using this correction method, the right hand side of Eq. (4) becomes zero and the undershoot can be 

eliminated.  However, if Adv_In decreases during the correction of the outflow fluxes, the right hand 

side of Eq. (4) is still negative after the correction procedure and the correction method must be 

applied again.  Since this repetition increases the computational costs, the inflow flux to the 

undershoot cell is fixed during the correction procedure. 

2.3 PHYSICALLY APPROPRIATE FORMULATION OF MOMENTUM 

CALCULATION 

In general finite-volume methods, each mesh cell is defined as a control volume for calculations.  

Therefore, intermediate velocities which do not establish the continuity condition are calculated as: 1) 

using the velocity and density at time level n (v
n
 and ρn

, respectively), calculate the momentum at time 

level n (m
n
) (Eq. (6)); 2) calculate the momentum fluxes through each face during one time step (∆ t) 

and summarize the momentum fluxes to obtain the momentum change (δ m); 3) adding δ m to mn
, 

calculate the intermediate momentum (m
n+δ
) (Eq. (7)); 4) dividing m

n+1
 by the at density time level n+1 

(ρn+1
), calculate the intermediate velocity (v

n+δ
) (Eq. (8)).  It must be noted that only the advection term 

is discussed here and the diffusion, pressure and external force terms are neglected for simplification.  

Equations (6)-(8) are written as 

m
n
 = ρn

 v
n
,             (6) 

m
n+δ
 = m

n
 + δ m,              (7) 

 v
n+δ
 = m

n+δ
 / ρn+1

.             (8) 

Though this procedure is appropriate for single-phase simulations, it can be inappropriate for two-

phase simulations when large density ratio exists between two phases.  For example, we consider the 

case when liquid (the velocity and density are vl and ρl, respectively) flows into the mesh cell 

initially filled with gas (the velocity and density are vg and ρg, respectively).  If we assume that 

inflow liquid volume (Qin) is almost same with outflow gas volume (Qout), the intermediate momentum 

is calculated as 

m
n+δ

 = m
n
 + {(ρl vl) Qin - (ρg vg) Qout} / V 

 ≈ρg vg (1 – f ) + ρl vl f ,                (9) 

where Qin / V = f is used to derive the last equation.  In general, since the time step is determined to 

prevent f from taking large value, we assume that f << 1.  In addition, we impose ρg << ρl (here, ρl / ρg 

= 1000 assuming water and air).  Therefore, the intermediate velocity is calculated as 

v
 n+δ 

= m
 n+δ 

 / ρ n+1 

= {ρg vg (1 – f ) + 1000 ρg vl f } / (ρg + 999 f ρg ) 

≈ (vg + 999 vl f } / (1 + 999 f ) 
= α vg + (1 - α ) vl ,           (10) 
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where α = 1 / (1 + 999 f ).  Equation (10) shows that the intermediate velocity is calculated as the ρg 

weighted average of the gas and liquid velocities.  Then, substituting 0.01 as the value of f yields: 

v
 n+δ ≈ 0.09 vg + 0.91 vl.             (11) 

Equation (11) shows that even though the volume fraction (ratio of liquid phase) is only one percent, 

the intermediate velocity is dominated by the liquid velocity.  However, considering that the mesh cell 

is almost occupied by the gas phase, the intermediate velocity seems invalid as the physical value.  In 

fact, when we employed Eq. (6)-(8) to calculate intermediate velocity, unphysical pressure distribution 

was generated near bubble interface in numerical simulations of a rising bubble in liquid because the 

excessive pressure were evaluated by solving the Poisson equation to correct unphysical intermediate 

velocity (shown in Fig. 2).  Though this unphysical behavior appears when interface passes across a 

face (mesh cell face) as described above, the unphysical pressure distribution disappears with the 

progress of simulations.  Therefore, this behavior is not critical for simulations and seems not to be 

exposed.  However, since transient simulation results including unphysical behaviors are not reliable, 

the appropriate formulation must be derived to eliminate the unphysical behavior. 

 

(a)   (b)  

                 Time Level n              Time Level n+1 

Fig. 2:  Unphysical Pressure Distribution Induced by Inappropriate Momentum Calculation 

 

In our CFD method, we improved the momentum calculation procedure.  First, the gas and liquid 

velocities (vg and vl , respectively) were independently defined at each interfacial cell.  Then, using the 

gas and liquid velocities, the velocity and the momentum are calculated as : 1) using the velocity, 

momentum and volume fraction at time level n (v
n
, m

n
 and f 

n
, respectively), calculate the gas and 

liquid velocity at time level n (vg
n
 and vl

n
, respectively) (Eqs. (12) and (13)); 2) calculate the 

momentum changes for the gas and liquid phases (δ mg and δ ml , respectively); 3) adding δ mg and 

δ ml to the gas and liquid momentum at time level n (mg
n
 = ρg vg

n
 and ml

n
 = ρl vl

n
, respectively), 

calculate the intermediate momentum for the gas and liquid phases (mg
n+δ 

 and ml
n+δ 

, respectively) 

(Eqs. (14) and (15)); 4) divide mg
n+δ 

 and ml
n+δ
 by the gas and liquid densities, respectively, to calculate 

the intermediate velocity for the gas and liquid phases (vg
n+δ
 and vl

n+δ
, respectively) (Eqs. (16) and 

(17)); 5) calculate the intermediate velocity and momentum (Eqs. (18) and (19).  Equations (12)-(19) 

are written as 

vg
n
 = (ρl v

n
 - m

n
) / {(1 – f 

n
) (ρl - ρg)},           (12) 

vl
n
 = (m

n
 - ρg v

n
 ) / { f 

n
 (ρl - ρg)},           (13) 

mg
n+δ 

= {(1 – f 
n
) mg

n + δ mg} / (1 – f 
n+1
),           (14) 

ml
n+δ 

= (f 
n
 ml

n + δ ml) / f 
n+1
,            (15) 

vg
n+δ 

= mg
n+δ
 / ρg ,           (16) 

vl
n+δ 

= ml
n+δ
 / ρl ,           (17) 

v
n+δ 

= (1 – f 
n+1
) vg

n+δ
 + f 

n+1
 vl

n+δ
,            (18) 

m
n+δ 

= (1 – f 
n+1
) mg

n+δ
 + f 

n+1
 ml

n+δ
.            (19) 

These formulations were applied to numerical simulations of a rising bubble in liquid and succeeded 

in eliminateing the unphysical behavior induced by the conventional method because above 

formulations can calculate physically appropriate intermediate velocities at each interfacial cell while 

the intermediate momentum is completely same with the conventional method.  In other words, the 

new formulations can evaluate the intermediate velocity based on the volume fraction without 

reducing conservation propety of the momentum.  It should be noted that though the definition of the 

new variable at interfacial cells needs additional memory usage, the computational costs do not 

increase significantly because in general, the ratio of interfacial cells to whole mesh cells is small. 

Constant-Pressure Line 

Gas Bubble 

Liquid 

Gravity 
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2.4 PHYSICALLY APPROPRIATE FORMULATION OF VELOCITY-PRESSURE 

COUPLING 

The appropriate balance between the pressure and surface tension was already achieved on structured 

meshes (Francois, 2006).  The key to the appropriate balance is formulating the pressure and surface 

tension in the same form.  In other words, the appropriate balance is achieved by defining both the 

pressure gradient and surface tension on each (mesh cell) face.  This appropriate formulation 

guarantees to eliminate the spurious velocity around spherical bubbles induced by the conventional 

formulations.  However, we can not simply extend the formulations on structured meshes to 

unstructured meshes because the highly complicated formulation of the pressure gradient than on 

structured meshes is employed to establish high-precision calculations on unstructured meshes and the 

complicated formulation prevents the surface tension from being formulated in the same form.  In fact, 

when we employ the deferred-correction method for the pressure gradient calculation, the balance 

equation between the pressure and surface tension on a face is written as 

( ) ( )1 1 1 112
2 1 12 1 1 1 2 2 22

12

n n n n

f f f f

d
n p p d n F F

d
φ φ α ρ ρ α ρ ρ+ + + +

 
 
⋅ ∇ + − − ⋅∇ = ⋅ + 
  

r
r r rr r

r
, 

( ) ( )1 1 1 1

1 1 2 21 2
,n n n n

f fp pφ α ρ ρ α ρ ρ+ + + +∇ = ∇ + ∇          (20) 

where subscripts 1 and 2 indicate values at mesh cells on both sides of a face.  
fn
r
 is a unit 

normal vector of a face, 
12d
r

is a vector connecting cell centers from 1 to 2, p is pressure and F
r
 is 

surface tension.  α1 and α2 are weights for interpolating the cell values to a face.  In Eq. (20), the 

pressure gradient (the left hand side) is not written in the consistent form with the surface tension (the 

right hand side).  Therefore, the balance between the pressure and surface tension is not established. 

Instead of Eq. (20), we derived new formulations in which the appropriate balance is established.  First, 

the right hand side of Eq. (20) was modified to be consistent with the left hand side.  Then, Eq. (20) 

was divided into two equations as 

( ) ( )12 12
2 1 2 12 2

12 12

f f

d d
n p p n

d d
ϕ ϕ⋅ − = ⋅ −

r r
r r

r r ,          (21) 

( ) ( )12 12
12 122 2

12 12

f f f f

d d
n n F d F

d d
φ φ

   
   
⋅ − ⋅ = ⋅ − ⋅   
      

r r
r rr r

r rd∇ ∇∇ ∇∇ ∇∇ ∇ ,  

1 1 1 1

1 1 1 2 2 2

n n n n

f f fF F Fα ρ ρ α ρ ρ+ + + += +
r r r

,          (22) 

where ϕ is the surface tension potential calculated by considering the Laplace equation.  Our CFD 
method establishes Eqs. (21) and (22) independently to achieve the appropriate balance between the 

pressure and surface tension.  As for Eq. (21), by introducing suitable surface tension potentials, the 

pressure values can be uniquely determined at every mesh cells and the appropriate balance between 

the pressure and surface tension potential is established if the interfacial curvature values are correctly 

estimated for spherical bubbles.  On the other hand, it is much more difficult to establish the balance 

between the pressure gradient and surface tension in Eq. (22) than to establish Eq. (21) because the 

formulations of the pressure gradient and surface tension are quite different though the left and right 

hand sides are written in the same form.  While the pressure gradient is calculated by the pressure 

distribution, the surface tension is defined at each interfacial cell independently.  In other words, the 

number of unknowns in the left hand side of Eq. (22) is k (k is the number of the mesh cell) and is not 

equal to that in the right hand side (3k).  Therefore, we modified the formulation of the pressure 

gradient to be consistent with the surface tension as 

( )c c c
p F p ′∇ = + ∇

r
,             (23) 

where ( )
c

p ′∇  is a newly defined variable at each mesh cell and corresponds to a net correction quantity 

to the intermediate velocity because the velocity at time level n +1 is calculated as 
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v
n+1
 = v

n+δ 
 + ( )p ′∇ ∆t / ρc

n+1
,            (24) 

where the diffusion term and the pressure and external force terms at time level n are considered to 

calculate the intermediate velocity.  By introducing the net correction quantity, the number of 

unknowns in the left hand side of Eq. (22) reaches to 4k and reduced to 3k when the pressure values at 

each mesh cell are determined by Eq. (21).  Therefore, the left hand side of the Eq. (22) becomes 

consistent with the right hand side.  In this case, the appropriate balance between the pressure gradient 

and the surface tension can be established when the net correction quantity is zero, i.e. no acceleration 

associated with the surface tension works on the intermediate velocity.  It should be noted that though 

the definition of the net correction quantity makes the computational costs higher, the costs do not 

increase significantly because the net correction quantity is defined only at interfacial regions where 

the surface tension works. 

 

3.   VERIFICATION OF CFD METHOD 

3.1 VORTEX GROWTH AND DRIVEN-CAVITY PROBLEMS 

To verify the flow calculation method formulated in Section 2.1, we calculated the vortex growth and 

driven-cavity problems.  The vortex growth problem is proposed by Bell et al (1979) and calculated 

by some researchers (e.g. Sussman, 2003).  This problem treats inviscid flow in which vortices grow.  

One can know the accuracy of CFD methods by investigating conservation properties of the kinetic 

energy in this problem.  The numerical simulation is conducted in 1.0 x 1.0 square domain subdivided 

into 256 x 256 square mesh cells.  The periodic boundary conditions are applied to all four boundaries.  

As the initial condition, x (horizontal) and y (vertical) components of velocity (u and v, respectively) 

are defined as 

tanh(30( 1/ 4)) 1/ 2,

tanh(30(3/ 4 )) 1/ 2,

y for y
u

y for y

− ≤
= 

− >
  

(1/ 20)sin(2 ).v xπ=  (25) 

Figure 3(a) shows the vortex growth (vorticity distributions) in the simulation domain.  The vortices 

grow rapidly and high vorticity regions are formed.  Figure 3(b) shows the loss of the kinetic energy 

during the calculation (until t = 2.0).  The total loss of the kinetic energy is about 0.1 percent at t = 2.0 

and can be negligible in practical simulations.  In addition, the accuracy of our CFD method was 

investigated by conducting grid convergence tests.  As a result, it was confirmed that the CFD method 

had the second order accuracy. 

 

  
t = 0.4         t = 0.8 

  
(a)        t = 1.2         t = 2.0  (b) 

Fig. 3:  Simulation Result of Vortex Growth Problem: (a) Vorticity Distribution, (b) Loss of Kinetic 

Energy 

 

The well-known driven-cavity problem is frequently employed to verify CFD methods.  In our study, 

the cavity is 1.0 x 1.0 square (shown in Fig. 4(a)) and is subdivided into 40 x 40 square mesh cells 

(structured mesh) or 1,608 triangular mesh cells (unstructured mesh, shown in Fig. 4(b)).  The upper 
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wall is the moving wall with velocity 1.0 and the other walls are non-slip walls.  Figure 4(c) shows the 

velocity distributions on the dashed lines in Fig. 4(a).  The result on the structured mesh agrees well 

with the simulation result in GHIA et al (1982).  On the other hand, the simulation accuracy somewhat 

decreases on the unstructured mesh.  However, the discrepancy between the results on the structured 

and unstructured meshes is small enough to conclude that the high-precision simulation is also 

possible on unstructured meshes. 

 

(a)   (b)  (c)
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Fig. 4:  Simulation Results of Driven-Cavity Problem (Reynolds Number is 1000): (a) Simulation 

Domain, (b) Unstructured Mesh, (c) Velocity Distribution 

3.2 ZALESAK’S SLOTTED-DISK ROTATION PROBLEM 

The slotted-disk rotation problem is well-known and frequently used to verify two-phase simulation 

methods (volume-tracking algorithms).  The problem was well summarized in Rudman (1997) and 

therefore the same simulation conditions were utilized in our study.  The simulation domain is 4.0 x 

4.0 square in which a circular disk with a radius of 0.5 having a slot with a width of 0.12 is located at 

(2.0, 2.65).  Initially, the volume fraction is set unity in the slotted-disk and zero outside the disk.  The 

slotted-disk is rotated once around the domain center (2.0, 2.0) in the counter-clockwise direction and 

then the simulation error was estimated as the averaged value of the volume fraction differences at 

every mesh cells between the initial and the final (after the rotation) states.  Number of time marching 

for one rotation is also the same number (2524 steps) with the Rudman’s simulation condition.  The 

structured and unstructured meshes consist of 200 x 200 square mesh cells and 39,734 triangular mesh 

cells, respectively.  Table 1 shows the simulation errors.  It is evident that the present method is 

superior to the conventional volume-tracking algorithms, i.e. SLIC (Simple Line Interface Calculation, 

Noh, 1976), SOLA-VOF (Hirt, 1981) and FCT-VOF (Rudman, 1997) and is comparable with the 

high-precision volume-tracking algorithms, i.e. PLIC or Stream (Harvie, 2000) on the structured mesh.  

Though the simulation error becomes larger on the unstructured mesh, applying the volume 

conservative algorithm proposed in Section 2.2 highly reduces the simulation error.  Therefore, the 

simulation accuracy of the high-precision volume-tracking algorithm employed in our CFD method 

was confirmed to be high enough on both structured and unstructured meshes. 

 

Table 1:  Simulation Error in Slotted-Disk Rotation Problem 

 

 

 

 

 

 

 

 

 

 

 

Algorithm                    Mesh                                                     Error 

SLIC                                                  Structured                    8.38 × 10
-2
 

SOLA-VOF                                   Structured                    9.62 × 10
-2
 

FCT-VOF                                       Structured                    3.29 × 10
-2
 

PLIC                                                  Structured                    1.09 × 10
-2
 

Stream                                               Structured                    1.07 × 10
-2
 

Present  (Non-Conservative)     Structured                    1.07 × 10
-2 

                                                             Unstructured               1.50 × 10
-2
 

Present  (Conservative)               Structured                    1.08 × 10
-2
 

Unstructured               1.23 × 10
-2
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3.3 EVATUATION OF SPURIOUS VELOCITY 

To verify the appropriate balance formulation between the pressure and surface tension proposed in 

Section 2.4, two dimensional numerical simulations of a circular gas bubble in stationary liquid 

without the gravitational force were conducted.  The simulation domain is 40 x 40 square and 

subdivided into 40 x 40 mesh cells (structured mesh) and 1608 triangular mesh cells (unstructured 

mesh).  The circular gas bubble with a radius of 30.0 is located at the center of the simulation domain.  

The numerical simulations were assumed to be conducted for the air and water at the room 

temperature as ρg = 1.2929, ρl = 998 and σ = 0.0735.  The initial velocity and pressure distributions 
were assumed to be zero in all locations.  To the four walls containing the simulation domain, free-slip 

boundary conditions were applied.  The numerical simulations were conducted only for 1 time step (∆t 
= 10

-3
), and then we investigated the spurious velocity in the simulation domain.  First, we used a 

correct interfacial curvature value in both numerical simulations by the conventional method and the 

present method (with the appropriate balance formulation).  Then, the similar comparison was 

conducted in the case when the interfacial curvature values are estimated numerically using the 

volume fraction distributions.  In our CFD method, the interfacial curvature values are numerically 

estimated by the RDF (Reconstructed Distance Function) model proposed by Cummins et al (2005). 

The maximum spurious velocities in each simulation result are shown in Table 2.  It is well-known 

that the conventional method generates the spurious velocity even though the correct curvature value 

is employed in the simulations due to the unbalance formulation between the pressure and surface 

tension.  On the other hand, the present method succeeded in reducing the spurious velocity to 

machine zero on both the structured and unstructured meshes in the case when the correct curvature 

value is available.  Therefore, in this case, it is evident that the results by the present method 

experience no unphysical behaviors even if the time step proceeds.  When the RDF model was 

employed to estimate the curvature value, even the present method generated the spurious velocity.  

However, the norms of the spurious velocities are highly small compared to the conventional method.  

Therefore, the appropriate balance formulation was confirmed to be efficient for the numerical 

simulation of two-phase flows.  It is very interesting that even when the RDF model was employed, 

the conventional method gave almost the same results with the results base on the correct curvature 

value (this tendency was checked by comparing the spurious velocity distributions around the bubble).  

This fact indicates that the origins of the numerical errors generated in the conventional method are 

mainly on the unbalance formulation between the pressure and the surface tension.  Namely, the 

numerical errors generated in the estimation procedure of the interfacial curvature values by the 

modified RDF model are sufficiently small compared to the numerical errors induced by the unbalance 

formulation.  Therefore, we can conclude that unbalance formulations between the pressure and the 

surface tension should be primarily eliminated to employ the physically appropriate formulation. 

 

Table 2:  Maximum Norm for Spurious Velocity 

Simulation Methods 
Curvature 

Estimation 
Simulation Mesh 

Maximum Norm for 

Spurious Velocity 

Conventional Correct Structured 8.03 x 10
-7
 

  Unstructured 3.97 x 10
-6
 

 RDF Structured 8.03 x 10
-7
 

  Unstructured 4.05 x 10
-6
 

Present Correct Structured 2.51 x 10
-17
 

  Unstructured 5.46 x 10
-18
 

 RDF Structured 1.36 x 10
-9
 

  Unstructured 6.58 x 10
-10
 

 

4. APPLICATION TO RISING BUBBLE PROBLEM 

For the basic validation of our CFD method, transient behaviors of a rising gas bubble in liquid were 

numerically simulated and the simulation results were compared to the experimental data.  It is well 

known that transient behaviors of rising gas bubbles in liquid are categorized by the Morton number 

(M) and the Eotvos number (Eo).  For example, a number of experiments with different couplings of 
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the Morton and the Eotvos numbers were conducted by Bhaga et al (1981).  In our study, the 

numerical simulations were conducted for the rising gas bubble in the liquid under Bhaga’s 

experimental conditions of gas and liquid properties.  The simulation was conducted on the 

rectangular region with a height and width of 160 mm and 80 mm, respectively.  This region is 

subdivided into 80 x 40 mesh cells (structured mesh) and 3,234 triangular mesh cells (unstructured 

mesh, shown in Fig. 5(a)).  The center of the circular air bubble with a radius of 26.1 mm is initially 

located at a height of 30 mm from the bottom of the region.  The initial velocity and pressure 

distributions are zero in all locations.  We investigated numerically the transient behaviors of the air 

bubble for 0.3 second. 

The comparisons of the terminal bubble shapes between the simulation and experiment are shown in 

Fig. 5(b).  Under both Morton number conditions, the simulation results agree well with the 

experimental results even in the cases when the unstructured mesh is employed.  Therefore, it was 

confirmed that the numerical simulations by our CFD method could give physically appropriate 

solutions for a rising bubble in liquid on both the structured and unstructured meshes. 

 

                     
Mo = 1.31 x 10

0
                           

                     
Mo = 8.48 x 10

2
                          

(a)      (b)      Experiment   Structured mesh  Unstructured mesh 

Fig. 5:  Simulation Results of Rising Bubble in Liquid: (a) Unstructured Mesh, (b) Comparison of 

Terminal Bubble Shape (The experimental results are shown in Bhaga et al (1981).) 

 

5. NUMERICAL SIMULATION OF GE PHENOMENA 

Finally, we applied our CFD method to the GE phenomena in the basic GE experiment.  The basic GE 

experiment consists of a square rod and a suction tube (square tube with an inner edge length of 10mm 

and a wall thickness of 5.0mm) in a rectangular channel (Okamoto, 2003).  Working fluids are water 

and air.  The width of the channel, the initial free surface height from the bottom surface and the edge 

length of the square rod are 0.20 m, 0.15 m and 0.05 m, respectively.  The suction tube is located at 

0.05 m downstream of the square rod.  The water depth from the free surface to the suction mouth is 

0.05 m.  In the rectangular channel, inlet flow generates a wake behind the square rod when the flow 

goes through the square rod.  In the wake, vortices are generated and advected downstream.  When a 

vortex flows across the region near the suction tube, the vortex interacts with suction (downward) flow.  

The vortex core is connected to the suction mouth to be extended by the suction flow and the vortex 

strength rapidly grows up by the interaction between the vortex and the suction flow.  Accompanied 

by the vortex growth, a gas core is generated on the free surface and the stronger the vortex grows, the 

deeper the gas core develops.  Finally, when the gas core highly develops and reached to the mouth of 

the suction tube, the gas is entrained into the suction tube (occurrence of the GE).  Figure 6(a) shows 

the simulation mesh in which all mesh cells are hexahedral.  Since the GE occurs in the region near the 

suction tube, a finer mesh subdivision applied to the region is necessary for the accurate numerical 

simulations.  Therefore, the mesh cell size in the region near the suction tube is about 2.0 mm, around 

the rod region is 3.0 mm and the other regions is 6.0 mm.  As for the vertical mesh subdivision, to 

simulate the free surface deformation closely, the region near the free surface level is subdivided into 

about 2.0 mm.  The simulation was conducted under the GE condition, i.e. the condition under which 

the GE was observed in the experiment.  In this condition, the inlet velocity is 0.10 m/s and the suction 

velocity is 4.0 m/s.  In addition, the static pressure condition was applied to the outlet in the simulation. 
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Figures 6(b) and 6(c) show the simulation results for the free surface shape (the occurrence of the GE) 

and the transient vortical velocity distributions above the suction tube, respectively.  As shown in Fig. 

6(b), our CFD method succeeded in reproducing the GE occurrence observed in the experiment under 

the same condition.  In addition, it was confirmed that the GE in the simulation result was induced by 

the same mechanism with the experiment.  In other words, as mentioned above, the interaction 

between the vortex (free surface) and the suction flow induces the GE in the experiment, in the 

simulation result (shown in Fig. 6(c)), it is evident that the growth of the suction velocity towards the 

free surface extends the gas core and causes the GE.  Therefore, form these simulation results, our 

CFD method was validated to be applicable to the GE phenomena. 

 

(a)   (b)   (c)   

Fig. 6:  Simulation Result of GE: (a) Simulation Mesh, (b) Occurrence of GE, (c) Transient Vertical 

Velocity Distribution (m/s) 

 

6. CONCLUSION 

In this paper, we developed and validated a high-precision CFD method to evaluate the GE 

phenomena accurately.  First, the flow calculation method on unstructured meshes were formulated 

and verified.  As a result, our CFD method succeeded in calculating vortical flows accurately even on 

the unstructured mesh.  Second, the PLIC method was newly formulated on unstructured meshes and 

verified by solving the slotted-disk rotation problem.  In addition, the volume-conservative 

formulation was introduced to improve the simulation accuracy on unstructured meshes.  Third, the 

appropriate momentum calculation method and the appropriate balance between the pressure and 

surface tension were addressed to eliminate the unphysical behaviors (e.g. spurious velocity) generated 

in conventional methods.  Our new formulation succeeded in eliminating the unphysical behaviors 

near gas-liquid interface and deriving physically appropriate solutions.  Finally, the CFD method was 

applied to the rising bubble problem and the GE phenomena.  As a result, the simulation results of the 

rising bubble in liquid agreed well with the experimental data.  In addition, the occurrence of the GE 

in the basic GE experiment was reproduced by the simulation.  These validation results show that our 

CFD method is confirmed to be applicable to the numerical simulation of the GE phenomena. 
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