Noticeable achievements or progresses in Partitioning (Hydro & Pyro)?

- Existence of national/international research programs
 - Roadmaps, milestones ⇒ Partitioning scenarios
- Alternative partitioning processes
 - in Hydro: chromatographic extraction, crystallization (not only based on solvent extraction)
 - In Pyro: interesting engineering studies
- Better understanding of the chemistry of minor actinide separation both in Hydro & Pyro fields
 - Use of performing analytical techniques

What to do for further development in Partitioning (Hydro & Pyro)?

- In solvent extraction, same concepts investigated everywhere
 - Amides, DGA, BT(B)P
- ⇒ new ideas should be fostered
- Move faster from basic R&D to scientific feasibility
 - To point out possible technical dead-ends and focus basic research programs on technical problems
- Study the integration of the partitioning processes in some "reference" fuel cycle scenarios

Technical obstacle for further development in Partitioning (Hydro & Pyro)?

- Not enough dedicated facilities ("hot" laboratories) to carry out demonstrative experiments on genuine spent fuels
- Difficulties to assess the sturdiness of partitioning processes developed at the laboratory scale
 - How to extrapolate from lab-scale devices to industrial workshops?
 - How to extrapolate the long term performances of the process at the industrial scale?

Recommendations for further development in Partitioning (Hydro & Pyro)?

- Let the door open for scientific creativity
 - Key to unlock closed doors and fill technological gaps
- Simplify/optimize existing partitioning processes
 - Address the challenges of what surrounds the core of partitioning processes
 - Waste minimization, links between P&T (conversion of minor actinides for fuel re-fabrication)
- Go further towards the demonstrate the industrial feasibility of partitioning processes
- Foster education programs
- Collaborate at the international level
 - ACSEPT: an example of European collaboration