Session V Progress in Transmutation Physics Experiments and Nuclear Data

H. Oigawa (JAEA, Japan) E. M. Gonzalez Romero (CIEMAT, Spain)

Progress in Transmutation Physics Experiments and Nuclear Data

Notable Achievement or Progress

Nuclear Data:

- Uncertainty analysis showed large progress. We can estimate errors in reactor physics parameters caused by errors of nuclear data by using sensitivity analysis technique and covariance data.
- Differential measurements of MA nuclides are in progress.

Physics Experiment:

- Subcritical experiments are under way in YALINA and planned in GUINEVERE and KUCA.
- First reactivity determination from beam trips at YALINA
- J-PARC Transmutation Experimental Facility is now under the Check and Review of Atomic Energy Commission of Japan.

Progress in Transmutation Physics Experiments and Nuclear Data

Items to be done for future development

Nuclear Data:

- Discussion on the accountability or traceability of error data will be necessary, if we use the uncertainty analysis in the safety evaluation of the transmutation system.
- Differential measurements of MA and Pu isotopes are still needed, though they must be complemented by integral experiments and better covariance matrices evaluations.

Physics Experiment:

• We have still very few experiences for the simulation of the transmutation systems: both critical and subcritical.

Progress in Transmutation Physics Experiments and Nuclear Data

Technical Obstacle for Further Development

Nuclear Data:

• To measure the MA data, the sample preparation and its handling are the bottlenecks.

Physics Experiment:

- Same as above
- Facilities are very expensive to build and to operate

Progress in Transmutation Physics Experiments and Nuclear Data

Recommendations for Development of P&T

Nuclear Data:

- Nuclear data improvements needed for early optimization and selection of systems and fuel cycle options
- Establishment of an international framework to share the efforts on differential measurements, integral validations, and data evaluations is highly recommended. OECD/NEA can play an important role in this field.

Physics Experiment:

- Validation of licensing and operation procedures at increasing realism on complexity, neutron source type and power levels.
- Coupling of a sub-critical system with a spallation source is to be demonstrated.
- Critical and sub-critical experiments using MA fuels will be the next step to realize transmutation systems.