Concept of Waste Management and Geological Disposal Incorporating Partitioning and Transmutation Technology

<u>Hiroyuki OIGAWA</u>, Kenji NISHIHARA, Shinichi NAKAYAMA, and Yasuji MORITA

Japan Atomic Energy Agency

Scope of the Presentation

Benefits of P&T on Management of High-Level Radioactive Wastes (HLW):

- ✓ Reduction of long-term radiological toxicity
- ✓ Reduction of dose for future inhabitants
- ✓ Reduction of amount of HLW

✓ Reduction of repository size

To mitigate difficulties caused by long-term nature of radioactivity

To extend capacity of a repository

✓ Recovery of valuable materials from wastes, and so on.

Scope of the Presentation:

✓ Emplacement areas for waste forms per unit power generation estimated for various reactors and various P&T schemes.

- Reactor Type: UO₂-LWR, MOX-LWR, and MOX-FBR
- Cooling time before reprocessing: 5 and 20 years
- Reprocessing: PUREX, MA-recycling, and Full P&T for both MA and FP

✓ Coupling of P&T with **long-term predisposal storage of Sr-Cs**.

Fuel Burn-up and Decay Calculation

Reactor	Burn-up	U-235 or Pu enrichment	Pu-fissile fraction	MA fraction	Power generation efficiency
UO ₂ -LWR	43 GWd/t = 36MW/t X 1,194d	4.1 %		0.0%	34.0%
MOX-LWR	43 GWd/t = 36MW/t X 1,194d	6.1 %	68%	0.1%	34.0%
MOX-FBR	79 GWd/t = 72MW/t X 1,095d	17.3 %	64%	0.3%	38.5%

Code: ORIGEN-2

Cross section library: ORILIBJ32 (based on JENDL-3.2)

Amount of actinides and fission products generated from 1tHM of spent fuel was calculated.

Separation of Elements

(1) Conventional PUREX reprocessing (Process-R)

- ➢ Recovery efficiency of U and Pu : 99.5 %.
- Conventional glass waste form was assumed as the HLW.

(2) MA recycling without partitioning FP (Process-A)

>After the "Process-R", MA was recovered and transmuted.

Recovery efficiency of MA: 99%

Glass waste form containing FP and small amount of MA was assumed as the HLW.

(3) Full P&T for both MA and FP (Process-P)

MA was recovered and transmuted, and FPs were partitioned into 5 categories.

Separation of Elements Flow Chart of Partitioning Process

Oct. 7, 2008

Waste Forms

Waste Forms Number of Glass Forms for Process-R and A

Assumptions to estimate the number of glass waste forms for "Process-R" (conventional PUREX) and "Process-A" (MA recovery):

- Volume: 150 L (40cm^{\u03eb} x 120cm^{\u03eb})
- Weight: 400 kg
- Maximum fraction of waste oxides: 15 wt% (60 kg)
- > Maximum fraction of MoO_3 : **3 wt%** (12 kg)
- Maximum heat generation rate at fabrication: 2.3 kW/piece
- Maximum temperature of the buffer material in the repository: 100 °C To calculate the temperature transient after the disposal, 3-dimensional heat conduction calculation was conducted by ABAQUS code. The calculation model was based on the reference waste disposal concept of JNC (vertical emplacement type in hard rock) Fixed conditions:
 - ✓ Pitch of waste forms : 4.4 m
 - Distance between repository tunnels : 10 m
 - ✓ Depth of repository : 1,000 m
 - Cooling period after fabrication before disposal : 50 years (independent of cooling periods before the reprocessing)

Waste Forms Emplacement of Glass Waste Form

Reference waste disposal concept proposed by JNC in 2000 was adopted (vertical emplacement type)

50-year cooling before disposal was commonly assumed

Waste Forms Heat Generation of HLW

Waste Forms Temperature of Buffer Material (UO₂-LWR)

- Normalized by 1 tHM of spent fuel.
- The content of waste elements were restricted so as to adjust the maximum buffer temperature at 100°C.

¹⁰th OECD/NEA IEM on PT at Mito, Japan

Waste Forms Temperature of Buffer Material (MOX-LWR)

- The effect of Am-241 accumulation is significant.
- The maximum temperature is found at 300 y after disposal

¹⁰th OECD/NEA IEM on PT at Mito, Japan

Waste Forms Number of Waste Forms for Process-P

Wastes for full P&T (Process-P)

(b) Lanthanides : Glass waste form, 150 L, 400 kg
 Maximum fraction of waste oxides: 35 wt% (140kg)

 (c) Precipitate at preprocess : Glass waste form, 150 L, 400 kg Maximum fraction of waste oxides: 35 wt% (140kg) Maximum fraction of MoO₃: 8 wt% (32 kg)

(d) Sr, Ba : Calcined forms, 14 L, 5.3 kg of waste elements

(e) Cs, Rb : Calcined forms, 14 L, 4.5 kg of waste elements

(f) Tc-PGM : Metallic waste form, 7.5 L, 60 kg Maximum fraction of waste metal: 4wt%, 2.4kg)

(g) Secondary waste : neglected because of its small radioactivity

Estimation of Repository Area **Emplacement of Novel Waste Forms**

8W/m² was assumed to be the maximum allowable heat generation (350W/44m²)

Estimation of Repository Area Breakdown for Process-P

Calculated emplacement area for waste forms per 1TWhe of electricity

Reactor	Cooling time	(b) Ln	(c) Precipitation	(d) Sr, Ba	(e) Cs, Rb	(f) Tc-PGM
		High-density glass (150L)		Calcined form (14L)		Alloy (7.5L)
UO ₂ -LWR	5 y	3.36	1.37	<u>8.68</u>	<u>10.74</u>	2.95
	20 y	3.36	1.37	<u>9.29</u>	<u>9.54</u>	2.96
MOX-LWR	5 y	3.14	1.26	<u>8.24</u>	<u>11.66</u>	4.16
	20 y	3.14	1.26	<u>9.06</u>	<u>10.44</u>	4.17
Pu-FBR	5 y	2.69	1.08	<u>6.94</u>	<u>12.20</u>	3.72
	20 y	2.69	1.08	<u>7.63</u>	<u>11.21</u>	3.72

•Emplacement area for Process-P is dominated by Sr and Cs.

Estimation of Repository Area Results of Total Emplacement Area

- MA transmutation stabilizes the emplacement area for Pu utilization.
 Full P&T has a potential to reduce the emplacement area down to 1/4 1/5.
- Full P&T has a potential to reduce the emplacement area down to 1/4 1/5.

P&T Coupled with Long-term Predisposal Storage

- Once MA is removed from HLWs, their heat generation is dominated by Sr-90 and Cs-137, and decays with their half-lives, 30 years.
- Hence, compact emplacement will be achievable by extending the period of the predisposal storage.
- Recent study ^(*) shows that a very compact configuration is applicable if the waste forms (same size as the glass waste form) are sufficiently cooled down.
- □ In this study, **4 W/piece** was adopted as a criterion.

(*) : K. Nishihara, et al., J. Nucl. Sci. Technol., 45(1), 84 (2008).

Very Compact Configuration of Disposal

These concepts are based on the repository design for compressed waste forms of the hulls and end pieces of LWR spent fuels.

Time Periods of Predisposal Storage for Very Compact Disposal

		Process-	R Pr	ocess-A		
Reactor	Cooling	HLW	HL\	N w/o MA		
	ume	Nor	mal glass (150			
	5 y	1800 y 330 y				
00_2 -LVVR	20 y	2600 y		330 y		
	5 y	6000 y		600 y		
	20 y	3500 y		700 y	Influence of MA	
	5 y	3800 y	3800 y 85		leaking ir	to waste.
PU-FDK	20 y	3200 y		950 y		
		Process-P				
Reactor	Cooling	(b)Ln	(C)Precipitation	(d)Sr, Ba	(e)Cs, Rb	(f)Tc-PGM
Reactor	time	High-density glass (150L) Calcine		Calcined for	ed form (14L) X 10 Alloy (7 X 20	
	5 y	60 y	9 y	320 y	330 y	110 y
00_2 -LVVR	20 y	45 y	0 у	310 y	320 y	100 y
MOX-LWR	5 y	75 y	9 y	320 y	330 y	70 y
	20 y	60 y	0 y	310 y	320 y	50 y
Pu-FBR	5 y	90 y	10 y	320 y	320 y	70 y
	20 y	80 y	0 y	310 y	310 y	50 y

Five Typical Concepts of Waste Management and Geological Disposal (UO₂-LWR, CT=5 y)

Case	Waste	Waste form	Volume	Predisposal storage	Emplacement area
Process-R	HLW	Normal glass	479 L	50 y	140 m ²
Process-A	HLW w/o MA	Normal glass	398 L	50 y	117 m ²
	Ln	High-density glass	46 L	18 y	3.4 m ²
	Precipitation	High-density glass	82 L	5 y	1.4 m ²
Drococc D	Sr, Ba	Calcined form	28 L	130 y	8.7 m ²
FIUCESS-F	Cs, Rb	Calcined form	34 L	150 y	11 m ²
	Tc-PGM	Alloy waste	44 L	7 у	3.0 m ²
		Total	234 L	(Av. 44 y)*	27 m ²
Process-A with long-term predisposal storage	HLW w/o MA	Normal glass	398 L	330 y	2.5 m²
	Ln	High-density glass	46 L	60 y	0.3 m ²
	Precipitation	High-density glass	82 L	9 y	0.5 m ²
Process-P with	Sr, Ba	Calcined form	28 L	320 y	0.2 m ²
storage	Cs, Rb	Calcined form	34 L	330 y	0.2 m ²
Storage	Tc-PGM	Alloy waste	44 L	110 y	0.3 m ²
		Total	234 L	(Av. 122 y)*	1.5 m ²

* Average period weighted by the volume of the wastes

Five Typical Concepts of Waste Management and Geological Disposal (MOX-FBR, CT=5 y)

Case	Waste	Waste form	Volume	Predisposal storage	Emplacement area
Process-R	HLW	Normal glass	903 L	50 y	265 m²
Process-A	HLW w/o MA	Normal glass	298 L	50 y	87 m ²
	Ln	High-density glass	37 L	23 y	2.7 m ²
	Precipitation	High-density glass	65 L	5 y	1.1 m ²
Drococc D	Sr, Ba	Calcined form	22 L	100 y	6.9 m ²
FIUCESS-F	Cs, Rb	Calcined form	39 L	120 y	12 m ²
	Tc-PGM	Alloy waste	56 L	7 у	3.7 m ²
		Total	219 L	(Av. 39 y)	27 m ²
Process-A with long-term predisposal storage	HLW w/o MA	Normal glass	298 L	850 y	1.9 m²
	Ln	High-density glass	37 L	90 y	0.2 m ²
	Precipitation	High-density glass	65 L	10 y	0.4 m ²
Process-P with	Sr, Ba	Calcined form	22 L	320 y	0.2 m ²
storage	Cs, Rb	Calcined form	39 L	320 y	0.3 m ²
Storage	Tc-PGM	Alloy waste	56 L	70 y	0.4 m ²
		Total	219 L	(Av. 125 y)	1.5 m ²

Conclusions

Recovery and transmutation of MA can play an important role in stabilizing the repository area for the future Pu utilization.

- If further extension of the capacity of a repository is required for the sustainable utilization of the nuclear fission energy by both UO₂ and MOX fuels, the full P&T would be a very powerful measure to reduce the total emplacement area down to about 1/5 of the conventional disposal concept planned in Japan.
- Coupling of P&T with long-term predisposal storage will provide us significant (maximum about 2 orders) reduction of repository area, though the burden of storage for about 300 years and the high efficiency of MA separation should be the next challenges.