

F. Delage, A. Fernandez-Carretero, C. Matzerath-Boccaccini, X.-N. Chen, E. D'Agata, F. Klaassen, W. Maschek, J.P. Ottaviani, A. Rineiski, V. Sobolev, J.P. Hiernaut, R. Thetford, Janne Wallenius

OUTLINE:

- Objectives & Background
 - Addressed topics
 - Some results:

Core configuration and performances
Thermomechanical behaviour of the pins
FUTURIX-FTA, HELIOS, BODEX tests
Thermo-chemical compatibility tests

Conclusion

Objectives & background for fuel developments

Objectives:

Ranking of fuel concepts according to in-pile behaviour, out-of-pile properties, predicted behaviour in normal operating conditions and safety performance.

Recommendations for the most promising fuel.

Background:

- Emphasis in Europe on oxide-based fuels reference fuels CERCER (Pu, MA)O₂ + MgO and CERMET (Pu, MA)O₂ + ⁹²Mo
 - First development in the frame of the FP5 FUTURE program: best candidates according to performance, safety and fabricability criteria, synthesis of oxide compounds, out-of-pile characterisation.
 - Strong synergy with transmutation target programs
 - Large industrial experience on oxide fuel fabrication for critical reactors
- Nitride-based fuels: (Pu,MA,Zr)N backup solution
 - Development in the frame of the FP5 CONFIRM program: (Am,Zr)N synthesis, irradiation of (Pu,Zr)N pellets in HFR, out-of-pile measurements
 - Development by JAEA

Topics addressed within the project

- TRU-fuel design and performance assessment:
 - Neutronic design of CERCER and CERMET cores
 - Neutronic and thermo-mechanical behaviour from BOL to EOL
- Safety Analysis: transients conditions (ULOF, UTOP, ...) and accidents
- In-pile experiments:
 - PIE on an irradiated CONFIRM pin: (Pu,Zr)N fuel
 - FUTURIX-FTA test in PHENIX
 - HELIOS test in HFR
 - BODEX test in HFR and Post Irradiation Examinations
- Out of pile experiments:
 - Thermal and mechanical properties of CERMET, CERCER fuels
 - Chemical compatibility: fuels/clad, fuels/coolant, TRU compounds/Inert Matrices
 - Oxygen potential measurements
 - Phase diagrams : Pu-Am-O, Pu-Am-Zr-O

⁹²Mo-CERMET core configuration and performances

EFIT design specifications:	EFIT	design	specification	ns:
-----------------------------	-------------	--------	---------------	-----

- 400MWth
- proton beam: 800MeV 20mA
- Pb target: 11MW ₱ 782mm
- $k_{eff} \sim 0.97$
- fuel vector
- inlet-outlet Pb T°: 400-480°C
- clad and wrapper: T91
- efficiency: ~42kg MA/TWh_{th}

F. Delage

		PROGRAMME
Zones		
Inner	Medium	Outer
42	90	80
	178	
	169	
	9.52	
	8.00	
	0.160	
35/65	43/57	50/50
	45/54	
270	262	211
•		
190	172	154
	42	Inner Medium 42 90 178 169 9.52 8.00 0.160 35/65 43/57 45/54 270 262

k_{eff}	k_{source}	Void worth	Beta eff.	Doppler Contant
0.97336	0.93337	7335 pcm	192 pcm	-68 pcm

	Initial mass (kg)	Variation (3 year cycle + 3 year cooling)
MA	3610	-461 kg
Pu	3055	-9 kg
Total	6665	-43 kg/TWh _{th}

Thermo-mechanical behaviour at BOL

fuel, clad and coolant temperatures for the hottest pin in the inner zone
 24 hours after start :

FUTURIX-FTA test in PHENIX

Collaboration DOE-JAEA-ITU-CEA

CERMET and CERCER studies under EUROTRANS project

Fuel composition	Max. linear power (W/cm)	T° max. estimated (°C)
Pu _{0,80} Am _{0,20} O _{2-x} + 86 vol%Mo	140	1590
Pu _{0,23} Am _{0,24} Zr _{0,53} O _{2-x} + 60 vol%Mo	130	1510
Pu _{0,5} Am _{0,5} O _{2-x} + 80 vol%MgO	100	1420
Pu _{0,8} Am _{0,2} O _{2-x} +75 vol%MgO	80	1260

CERCER and CERMET fuels in pile since may 2007 for ~240 EFPD

- CERCER: 5th ring. Flux: 4,4x10¹⁵ n.cm⁻².s⁻¹

-CERMET: 1st ring. Flux: 3,2x1015 n.cm-2.s-1

Sept. 08: 153 EFPD achieved

HELIOS test in HFR

Influence of microstructure and temperature on gas release and fuel swelling.

Fuel composition	T° max. estimated (°C) (Ne+He in gap)	
$Am_2Zr_2O_7 + 80 \text{ vol}\%MgO$	800	
$Zr_{0,80}Y_{0,13}Am_{0,07}O_{2-x}$	720	
$Pu_{0,04}Am_{0,07}Zr_{0,76}Y_{0,13}O_{2-x}$	1470	0.7g Am/cm ³
$Am_{0,22}Zr_{0,67}Y_{0,11}O_{2-x} + 71 \text{ vol}\%Mo$	750	
Pu _{0,80} Am _{0,20} O _{2-x} + 84 vol%Mo	1240	

Beginning of the irradiation expected by Nov. 08 for 200 EFPD

CERCER and **CERMET** fabrication processes

BODEX test in HFR

• Study of helium build-up and release mechanism study on inert matrices

- 10 B surrogate of 241 Am to simulate He production: $^{10}_5B+^1_0n \rightarrow ^7_3Li+^4_2\alpha$
 - Advantages : no Am handling & short irradiation time (~1-2 months)

✓ 2x3 capsules : 3 pellets doped with ¹⁰B + 1 pellet doped with ¹¹B + 1 undoped pellet

Irradiation achieved – PIE on-going

TRU-oxides/Inert Matrices compatibility tests

- powder blend
- 1800K or 1300K 2x24 h

F. Delage

- Air/Ar/Ar-H₂ 5%,
- XRD analysis:

Atm	PuO ₂ +MgO	AmO₂+MgO	PuO ₂ +Mo	AmO₂+Mo
Alr		AmO ₂ MgO		
Ar	MgO PuO₂	Am ₂ O ₃ h & c AmO _{2-x} c MgO Other peaks	PuO ₂ Mo	Mo Am-Mo-O m?
Ar/H ₂ 5%	PuO₂ MgO	Am ₂ O ₃ h & c MgO	PuO _{2-x} c Mo	Am ₂ O ₃ h Mo

[Belin&al., ARWIF 2008]

no reaction between PuO₂ and Inert Matrices

minor interactions between AmO₂ and Inert Matrices

Conclusion

- MA/(Pu+MA)~54% MgO and Mo content ≥ 50%
- transmutation efficiency (1st cycle): 42 kg MA/TWhth ∆Pu~0
- safety under analysis

F. Delage

- CERCER and CERMET fabrication (20%Am) demonstrated at lab. scale
- Thermal properties of CERCER, CERMET fuels and (Pu,MA)O₂ phases:
 accurate and reliable data available
- In-pile fuel behaviour investigation on-going
- Fuel thermomechanical behaviour modeling under development

Additional information.

- Fernandez-Carretero et al. (Oct.8 9:00): fuel fabrication
- Maschek et al. (Oct. 9 14:15): Core design and safety analysis
- Chen et al. (Poster section IV): Safety studies on the EFIT with CERMET fuel

