

The RIAR DOVITA-1/2 P&T Program – Current Results of the 15-year R&D activities

M.V. Kormilitsyn, A.V.Bychkov, O.V. Skiba, A.G. Osipenko

State Scientific Center **Research Institute of Atomic Reactors** Dimitrovgrad-10, Ulyanovsk region, 433510, Russia e-mail: <u>kormilitsyn@niiar.ru</u>

Experience in Closed Fuel Cycle including pyrochemical processes

Research Institute on Atomic reactors – RIAR (Dimitrovgrad) is most Russian R&D center of non-aqueous methods development:

- Pyrochemical investigation from early 1960-s
- Demonstration of fluoride volatility reprocessing technology 1970s
- Demonstration facility for pyrochemical MOX-fuel production for fast reactor – from late 1970-s
- Pyroelectrochemical reprocessing experience 1990-2003
- Preparation for industrial application from 1990-s
- Study on transmutation cycle, nitride fuel and other applications from 1990s

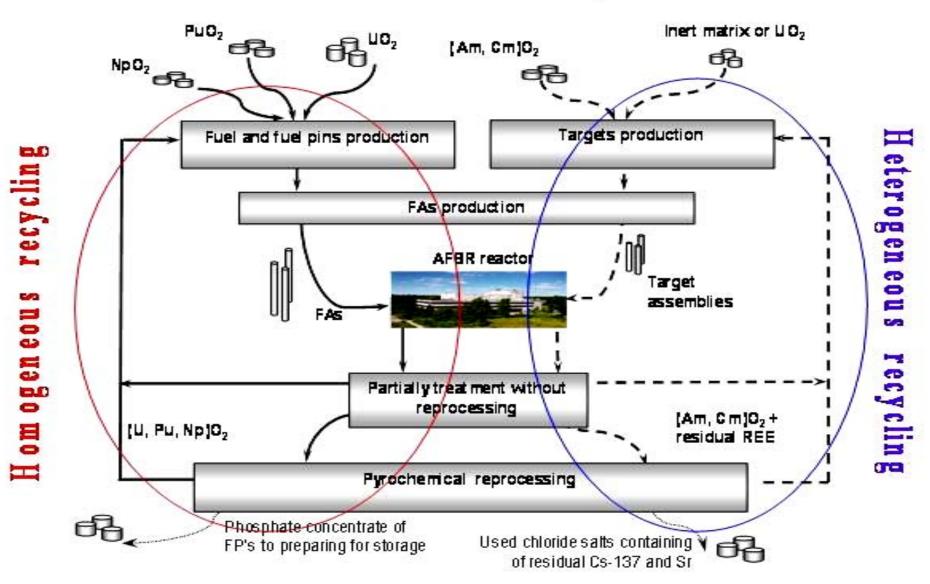
Since 1992 RIAR has been performing own R&D DOVITA Program

- Dry technologies for MA fuel reprocessing and preparation
- Oxide fuel application as the most widely studied one

НИИАР

- Vibropacking automated technology of the fuel pin production
- Integrated disposition of fuel reprocessing and fuel element refabrication facilities on the same site with the reactor
- TA The whole complex of approaches will permit a creation of the compact plant for Transmutation of Actinides

Experience in adding of minor actinides in fuel compositions and results of irradiation



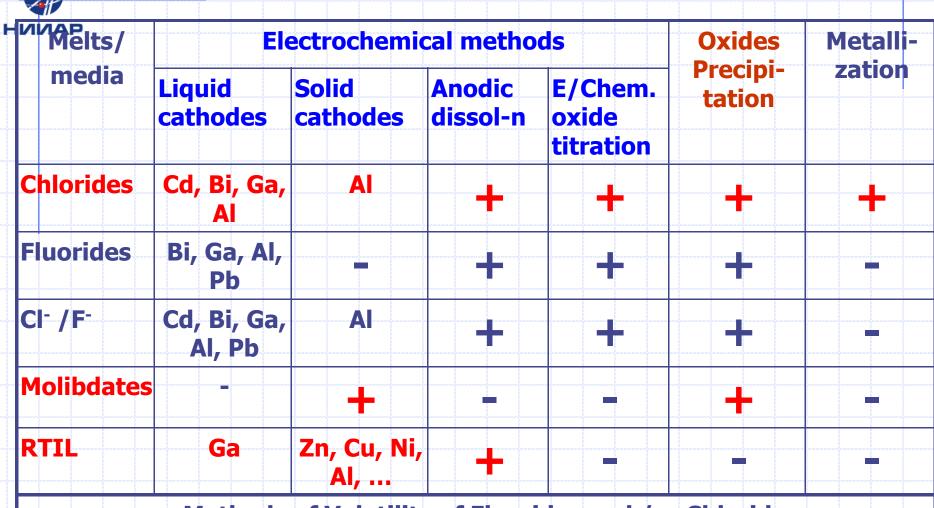
Irradiated (U,Np)O₂ fuel, 19% burn-up

- Pyrochemical technology of adding Np into oxide fuel (5-20%) has been developed
- Performance of vi-pack fuel with (U,Np)O₂ fuel has been validated experimentally to ~20% burnup in BOR-60
- **No evidence of significant difference in performance** of fuel rods with (U,Np)O₂ fuel compared with UO₂ or MOX fuel rods has been noticed
- Pyrochemical process of codeposition of Am with MOX fuel (2-4%) has been developed
 - Methods of Am/REE separation in melts has been tested
- Special vi-pack targets containing Am oxide with UO2 or inert matrix have been developed
- Transmutation of Np, Am, Cm is being studied in BOR-60

DOVITA fuel cycle

New times consideration: DOVITA DOVITA-2

- **1992 D**ry technologies **O**xide fuel with MA
- > Vi-pack
- Integrated disposition same site with the reactor
- TA Transmutation of Actinides


2006-2008 Dry technologies On-site reprocessing Various type of fuel with MA Integration of MA recycling into FR Closed **Fuel Cycle TA** - Transmutation of **Actinides**

DOVITA-2

	-					
Fuel type/ Stages)xide -pack	Oxide pellet	Nitride pellet/ vi-pack	Metal	Molten salt
Concept Studies		+	+	+	+/-	+
R&D		+	-/+	+/-	-	+
Fuel Production		+	-	-	-	-
Irradiation Testing		+	-	-	-	-
PIE		+	-	-	-	
Reprocessing	D	-/+)VITA-	-	-/+	-	+/-

Research area of pyrochemical and non-aqueous MA/FP partitioning in frame DOVITA-2 Program

+ Methods of Volatility of Fluorides and /or Chlorides

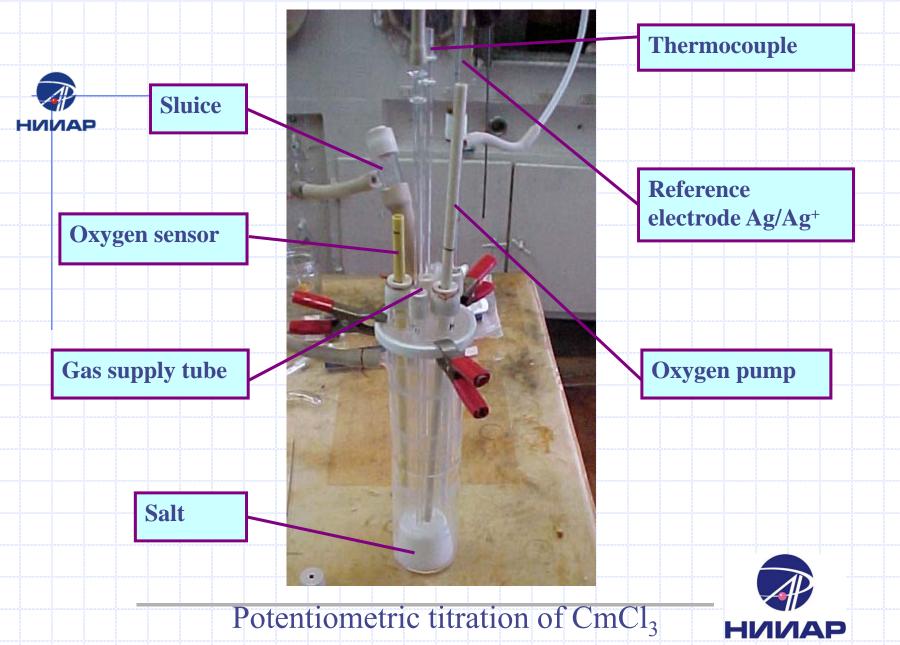
Recent RIAR activities in frame of DOVITA-2 Program

ISTC Project # 3261 (2006-2008)

Study of Cm thermodynamics in molten chlorides

Objectives

Reactions of formation for oxygen Cm compounds – equilibrium constants for reactions of Cm oxygen compounds formation versus temperature;

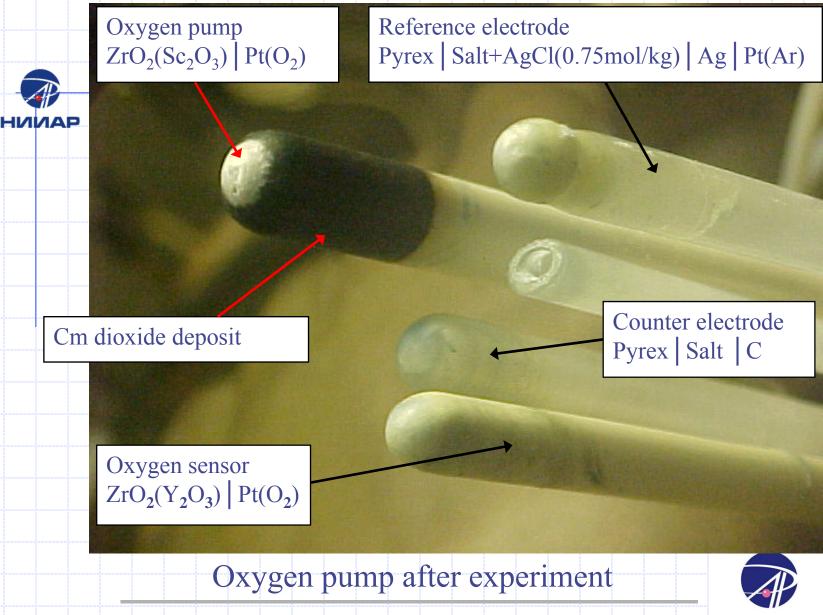

- equilibrium constants for reactions of Cm oxygen compounds formation versus the inverse effective radius of solvent cathion

1st Year is completed

Reactions of formation for oxygen-free Cm compounds - standard potential for redox pair versus temperature; - standard potential for redox pair versus the inverse effective radius of solvent cathion

Simulation of Cm behavior in molten chlorides Pourbaix diagrams

Collaborators - ITU, CIEMAT, CEA, KTH

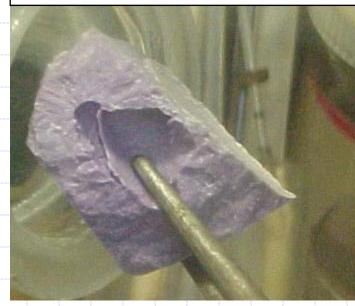


Potentiometric titration of CmCl₃

- **Applied methods:**
- main titration by BaO
- combined in case of absence of Section on preliminary experimental curve for CmO⁺ formation :
- titration by current through the electric circuit "oxygen pump" – "counter electrode" and then by BaO

Conditions of experiments

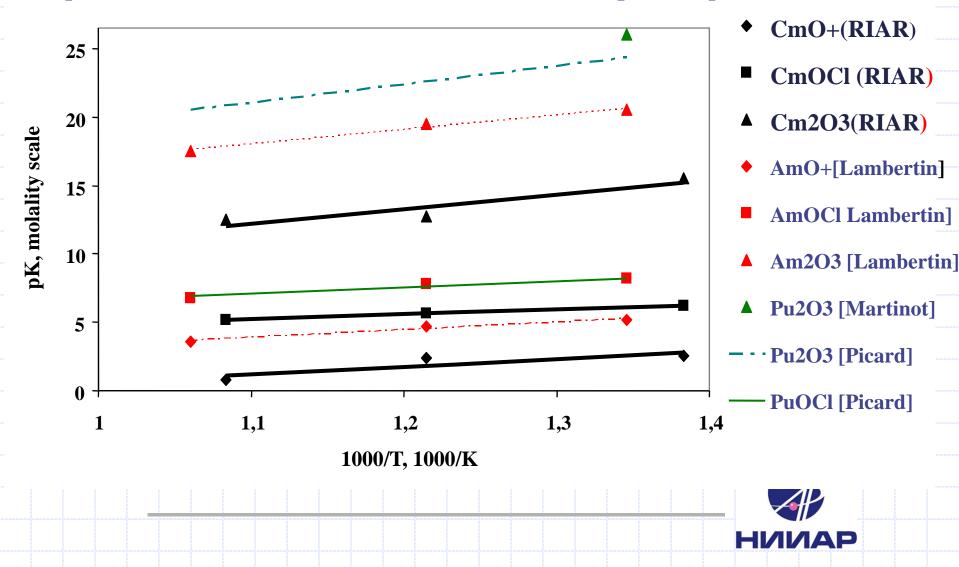
нииар Salt	Amount of Runs	Temperature range,°C	Range of Cm content in melt, mole/kg
NaCl-2CsCl		550-750	(1.1-14) [.] 10 ⁻³
3LiCl-2KCl		450-650	(1.9-7.9) [.] 10 ⁻³
NaCl-KCl	3	750-850	(5.0-6.9) [.] 10 ⁻³


NaCl-2CsCl+CmCl₃(1.4·10⁻²mole/kg)

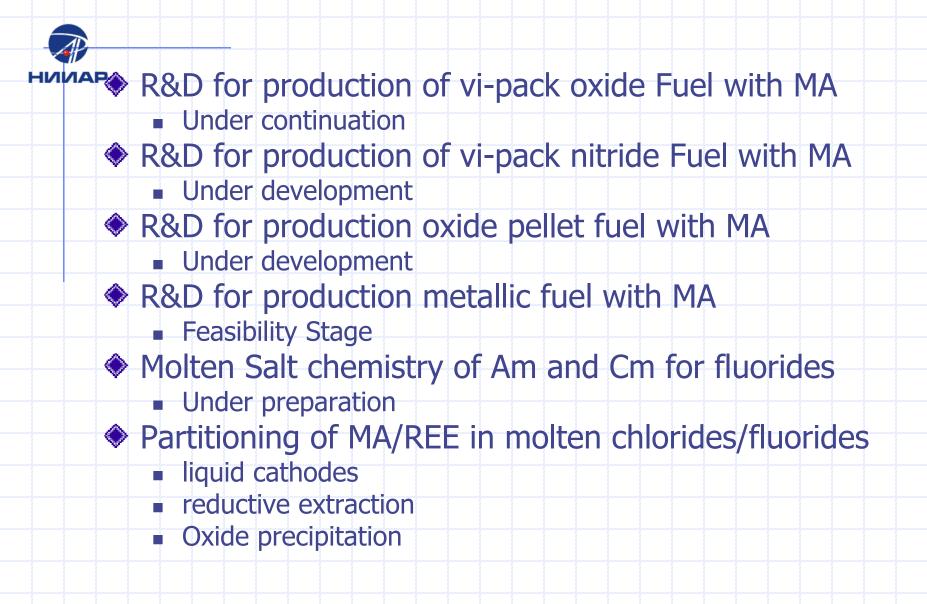
NaCl-KCl + CmCl₃(5.0·10⁻³mole/kg)

LiCl-KCl+CmCl₃(5.5·10⁻³mole/kg)

Salt ingot with CmCl₃



Experimental constants of CmO^+ , CmOCl and Cm_2O_3 dissociation in molten chlorides at different temperatures, molality scale


Melt	Tac			pK(Cm 0)
MEIL	T, °C	pK(CmO+)	pK(CmOCl)	pK(Cm ₂ O ₃)
NaCI-2CsCl	556	4.2 <u>+</u> 0.2	7.9 <u>+</u> 0.2	20.1 <u>+</u> 0.3
	650	3.4 <u>+</u> 0.2	7.5 <u>+</u> 0.2	18.5 <u>+</u> 0.3
	750	3.7 <u>+</u> 0.2	6.7 <u>+</u> 0.2	16.8 <u>+</u> 0.3
3LiCl-2KCl	450	2.5 <u>+</u> 0.2	6.2 <u>+</u> 0.2	15.5 <u>+</u> 0.5
	550	2.4 <u>+</u> 0.2	5.7 <u>+</u> 0.2	12.7 <u>+</u> 0.5
	650	0.83 <u>+</u> 0.1	5.2 <u>+</u> 0.2	12.5 <u>+</u> 0.5
NaCI-KCI	750	2.6 <u>+</u> 0.2	5.9 <u>+</u> 0.2	12.9 <u>+</u> 0.4
	800	2.4 <u>+</u> 0.2	5.8 <u>+</u> 0.2	12.6 <u>+</u> 0.4
	850	1.3 <u>+</u> 0.1	5.6 <u>+</u> 0.2	12.1 <u>+</u> 0.4

Comparison with literature data on other actinides. Dependence of dissociation constant for actinides upon temperature in LiCl-KCl

Recent RIAR activities in frame of DOVITA-2 Program

Official Investment Frames for Russian Nuclear Renaissance

 Federal Tasks Program "Development of Nuclear Power Complex of Russia on a period of 2007 - 2015"
- accepted in 2006

- NPP construction

Federal Tasks Program "Nuclear and Radiation Safety" (2008-2015) - accepted in 2007

- RAW Heritage

Federal Tasks Program "New Generation Nuclear Energy Technologies" (2010-2020) – on a final preparation Stage

- Innovations

Federal Tasks Program "New Generation Nuclear Energy Technologies"

- **RIAR planned participation**
- Multi-functional Fast Research Reactor (MFRR) 2016
- Large Multi-Purpose Pyrochemical Reprocessing Complex -2015
 - > Molten salt Reprocessing Facility
 - capacity up to 2 500 kg of SNF per Year (fuel type: oxide, nitride, metallic, IMF)
 - > Fluoride volatility Reprocessing Facility,
 - \checkmark capacity up to 500 kg of SNF per Year (mainly LWR SNF)
- New Lab for Experimental and Innovative Fuel Production 2010-1012 (incl. Fuel and Targets with MA)
- Demonstration of Closing Fuel Cycle based on Pyrochemical technologies -2016-2020-... on a levels:
 - > Up to 50 spent FAs of BN-600/800
 - Full scale CFC for MFRR from initial fuel loading
 - > Other experimental implementations

New Russian Sodium Fast Research Reactor – Multi-functional Fast Research Reactor (MFRR)

Location – RIAR site

ни

P Characteristic	Value
Maximum flux Φmax, n/cm2·sec	~ 6.0 ·10 ¹⁵
Thermal power, MWth	~ 150
Electric power, MWe	~ 50
Number of independent experimental loops (~1 MWth, sodium, heavy metal and gas coolant + salt coolants)	3 (+1 behind reactor vessel)
Driven Fuel	Vi-pack MOX, (PuN+UN)
Core height, mm	400-500
Maximum heat rate, kW/I	1100
Fuel Cycle	Full Scale Closed FC based on Pyro Processes
Test Fuel	Innovative Fuels, MA Fuels and targets
Maximum fluence in one year, n/cm2	~ 1,2·10 ²³ (up to 55dpa)
Design lifetime	50 year
RR creation time (no more than, years)	9 (2008 – 2016)

Start of BN Closed fuel Cycle based on RIAR technologies

- 2011 start of vi-pack MOX-fuel production for BN-800
- 2012 start of BN-800 operation
- 2016...2018 demonstration of BN-800 closed fuel cycle technologies

Key final official decisions:

- MOX-fuel production by pyroelectrochemistry and vibropacking
- Trend to closing of fuel cycle by compact dry technologies
- Development and testing of new fuel and new technologies

RIAR R&D International cooperation in the field of advanced FC

	Fuel production		Repro- cessing	P&T	Other	Cladding material		Funda- mental
~~	ΜΟΧ	other				S		Studies
France	-	MA oxide	-	Am/Cm recovery	Pyro	+	FS	Cm
INPRO	-	-	-	-	-	-	CPP RUS-2	-
Japan	MOX vibro	-	ΜΟΧ	MA/REE separ.	Fluorex/ MoO ₄ ²⁻	ODS	FS	MA
Korea	-	-	Metalliz. / vibro- DUPIC	MA/REE separ.	Pyro	-	-	-
••• US?	TRU fuel ?		UREX+1 ?	TRU fuel?	-	-	-	Pu in RTIL's
EU	-	MA nitride	-	-	MSR fuel	-	-	Cm

Red color – DOVITA-1/2 activities