The 10th OECD/NEA Information Exchange Meeting on Actinide and Fission Product P&T, Mito, Japan, 6-10 October 2008

Development and demonstration of a new SANEX process for actinide(III)/lanthanide(III) separation using a mixture of CyMe₄BTBP and TODGA as selective extractant

G. Modolo¹, M. Sypula¹, A. Geist², C. Hill³, C. Sorel³, R. Malmbeck⁴, D. Magnusson⁵, M. R. St. J Foreman⁵

¹Forschungszentrum Jülich GmbH (FZJ), Jülich, Germany
²Forschungszentrum Karlsruhe (FZK), Karlsruhe, Germany
³CEA, Marcoule, France
⁴ Institute for Transuranium Elements (ITU) Karlsruhe, Germany
⁵Chalmers University, Gothenburg, Sweden

Outline of the presentation

European hydrometallurgical separation strategy

- **TODGA/TBP process for co-extraction of An(III) + Ln(III)**
- Status of EUROPART research on An(III)/Ln(III) separation
- **CyMe₄BTBP**, an effective extracting agent for An(III)/Ln(III)
- Optimisation studies and CC tests using centrifugal contactors
- Conclusions and Outlook

Fission products

Activation products

Co-extraction of Actinides(III) and Lanthanides(III)

Recovery rates: Am + Cm + Ln > 99.99%, low non-Ln impurities

Modolo et al, Part I, Solv. Extr. Ion Exch., 25, 703-721 (2007) Modolo et al, Part II, Solv. Extr. Ion Exch., 26 (1), 62 – 76 (2008) Magnusson et al, Part III, Solv. Extr. Ion Exch., in press

Work done in EUROPART

Separation of Actinides(III) from Lanthanides(III)

at $HNO_3 > 1 M HNO_3$

Needs a synergist, which complicates regeneration

CC tests with real HAR gave promising results

Low hydrolytic and radiolytic stability

Call for improvements

Separation of Actinides(III) from Lanthanides(III) Main achievements during EUROPART

- Sulphur containing ligands (dithiophosphinic acids)
 - ☺ No improvement of systems developed during FP5 (PARTNEW)

Nitrogen containing ligands (heterocyclic rings)

- ⁽²⁾ No extraction efficiency for molecules such as
 - Pyridine-diazines,
 - Bis-diazine-pyridine,

Hemi-BTPs

Require synergists (carboxylic acid) to extract at higher acidity

Separation of Actinides(III) from Lanthanides(III) Main achievements during EUROPART

Nitrogen containing ligands (heterocyclic rings)

Very good extraction efficiency for

BATBPs

CyMe₄-BTP

 $\odot D_{Am} > 1; SF_{Am/Eu} > 1000$ ⊖ Low solubility ⊗ Radiolytic instability ⊗ No An(III) stripping

C5-BTBP

☺ D_{Am} > 1; SF_{Am/Eu} > 100 ⁽³⁾ Hydrolytic Instability

CyMe₄-BTBP

☺ D_{Am} > 1; SF_{Am/Eu} > 100 ☺ High hydrolytic stability

- ⊗ Kinetics is slow

Radiolytic stability

⊖ Low solubility

Separation of Actinides(III) from Lanthanides(III) Optimisation studies with CyMe₄BTBP + DMDOHEMA

Geist, Hill, Modolo, Foreman, Weigl, Gompper, Hudson, Madic, Solv. Extr. Ion Exch., 24, 463–483 (2006)

0.015 M CyMe₄BTBP 0.25 M DMDOHEMA in n-octanol Solvent Feed 0.015 M CyMe₄BTBP SANEX + 0.25 M DMDOHEMA (An + Ln), in n-octanol HNO₃ 1.3 M 10 mL/h 10 mL/h Spent solvent Stripping Extraction Scrubbing **Raffinate An(III) Product** Scrub Strip Ln(III) HNO₃ 0.7 M **Glycolic acid** 10 mL/h 0.5 M, pH = 410 mL/h Flowsheet proposed by CEA (C. Sorel)

Element	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	²⁵² Cf	²⁴¹ Am	²⁴⁴ Cm	¹⁵² Eu
mg/L	56	209	397	204	764	151	140	78	traces			

Composition of synthetic SANEX feed (generated during TODGA/TBP test)

Separation of Actinides(III) from Lanthanides(III) *Kinetic tests in test tubes with CyMe*₄*BTBP* + *DMDOHEMA*

Aqueous A/O Distribution ratio D_{Am(III)} conditions **Organic phase** ratio phase SANEX feed 0.015 M CyMe₄-BTBP + 0.25 M Extraction 0.5 DMDOHEMA in octanol 1.15 M HNO₃ Scrubbing 0.8 M HNO₃ Loaded organic phase from extraction 1 0.5 M Glycolic Stripping Loaded organic phase from extraction 1 acid set to pH 4

ÜLICH

SANEX Feed

Element	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	²⁵² Cf	²⁴¹ Am	²⁴⁴ Cm	¹⁵² Eu
mg/L	56	209	397	204	764	151	140	78	traces			

Separation of Actinides(III) from Lanthanides(III) Single centrifuge kinetic tests

Tost number	Sampla	Flow rate (mL/h)					
rest number	Sample	Organic phase	Aqueous phase				
Test 1	EX 1	20	40				
Test 2	EX 2	10	20				
Test 3	EX 3	5	10				
Batch Test	FX eq	Organic phase: 0.015 M CyMe ₄ -BTBP + 0.25 M DMDOHEMA in 1-octanol					
Daton rest	EX 09	<u>Aqueous phase</u> : SANEX Feed, A/O ratio = 2 , Mixing time 15 min, 22°C					

Separation of Actinides(III) from Lanthanides(III) Single centrifuge kinetic tests

Tost number	Sampla	Flow rate (mL/h)				
1 est number	Sample	Organic phase	Aqueous phase			
Test 1	EX 1	20	40			
Test 2	EX 2	10	20			
Test 3	EX 3	5	10			
Ratch Tast	EX og	Organic phase: 0.015 M CyMe ₄ -BTBP + 0.25 M DMDOHEMA in 1-octanol				
Daton rest	Exeq	Aqueous phase: SANEX Feed, A/O ratio = 2 , Mixing time 15 min, 22°C				

Sample	D _{Eu}	D _{Am γ}	D _{Am α}	D _{Cm}	D _{Cf}	SF _{Am/Eu}	SF _{Am/Cm}
EX 1	0.05	0.62	0.58	0.35	0.61	13	1.65
EX 2	0.08	1.48	1.32	0.73	1.49	19	1.81
EX 3	0.11	2.48	2.02	1.20	2.38	21	1.68
EX eq	0.21	27	25	13	183	133	1.92

Too slow kinetics (extraction and stripping) to implement the current flow sheet Needs modification

Separation of Actinides(III) from Lanthanides(III) Results of hot BTBP/DMDOHEMA (ITU 2008, CC)

- > 99.9% of the An(III) in the product
- The Ln remained in the raffinate
- No detectable Ln or An in the spent organic phase

Separation of Actinides(III) from Lanthanides(III) Optimisation studies, influence of TODGA

Organic phase: Aqueous phase: 0.015 mol/L CyMe₄BTBP + variable TODGA in n-octanol variable HNO₃, traces of ²⁴¹Am and ¹⁵²Eu, 22 $^{\circ}$ C

Separation of Actinides(III) from Lanthanides(III) Optimisation studies, influence of TODGA

Organic phase: Aqueous phase: 0.015 mol/L CyMe₄BTBP + variable TODGA in n-octanol variable HNO₃, traces of ²⁴¹Am and ¹⁵²Eu, 22 °C

Separation of Actinides(III) from Lanthanides(III) Optimisation studies, influence of TODGA

Organic phase: Aqueous phase: 0.015 mol/L CyMe₄BTBP + variable TODGA in n-octanol variable HNO₃, traces of ²⁴¹Am and ¹⁵²Eu, 22 °C

Separation of Actinides(III) from Lanthanides(III) Optimisation studies with CyMe₄BTBP

JÜLICH FORSCHUNGSZENTRUM

Organic phase: Aqueous phase: 0.015 mol/L CyMe₄BTBP in n-octanol 1.0 mol/L HNO₃, traces of ²⁴¹Am and ¹⁵²Eu, 22 °C

Separation of Actinides(III) from Lanthanides(III) Optimisation studies with CyMe₄BTBP

Organic phase: Aqueous phase:

0.015 mol/L CyMe₄BTBP (+ 0.005 mol/L TODGA) in n-octanol 1.0 mol/L HNO₃, traces of ²⁴¹Am and ¹⁵²Eu, 22 °C

Separation of Actinides(III) from Lanthanides(III) Optimisation studies with CyMe₄BTBP

0.25 M

Organic phase:

Aqueous phase:

0.015 mol/L CyMe₄BTBP without and with (0.005 mol/L TODGA or 0.25 mol/L DMDOHEMA) in n-octanol 1.0 mol/L HNO₃, traces of ²⁴¹Am and ¹⁵²Eu, 22 °C

Separation of Actinides(III) from Lanthanides(III) Single centrifuge kinetic tests

Extraction from SANEX feed

Flow		TODG	A	DMDOHEMA			
mL/h (aq/org)	D_{Eu}	$D_{\!Am}$	SF _{Am/Eu}	D_{Eu}	D_{Am}	SF _{Am/Eu}	
40/20	0.16	0.8	5	0.048	0.6	13	
20/10	0.18	1.3	7	0.079	1.5	19	
Batch eq.	0.28	22	80	0.21	25	120	

Stripping with glycolic acid

Flow		TODGA	4	DMDOHEMA			
mL/h(aq/org)	D_{Eu}	D _{Am}	SF _{Am/Eu}	D_{Eu}	D_{Am}	${\sf SF}_{{\sf Am}/{\sf Eu}}$	
20/20	0.099	0.22	2.2	1.7	5.5	3.2	
10/10	0.095	0.08	0.8	0.65	1.8	2.7	
Batch eq.	0.044	0.003	0.07	0.02	0.002	0.08	

Separation of Actinides(III) from Lanthanides(III) Results of spiked BTBP/TODGA (FZJ 2008, CC)

No detectable Ln or An in the spent organic phase

Separation of Actinides(III) from Lanthanides(III) Results of spiked BTBP/TODGA (FZJ 2008, CC)

Separation of Americium(III) from Curium(III)

Modolo, Odoj, European Patent 1664359B1, (2007) Modolo, Nabet, Solv. Extr. Ion Exch., 23, 359-373 (2005)

Separation of Americium(III) from Curium(III) LUCA demonstration

Separation of Americium(III) from Curium(III) LUCA demonstration

- >99.9% of the Am(III) extraction, no Cm(III) contamination
- The Ln + Cm(III) + Cf(III) remained in the raffinate,
- Stripping can easily be optimized

Conclusions

- CyMe₄BTBP is a promising extractant for An(III)/Ln(III)
- Kinetic of extraction is low, can be improved by a phase transfer catalyst such as DMDOHEMA or TODGA
- Optimisation studies leads to the development of reversible extraction processes
- Hot CyMe₄BTBP + DMDOHEMA extraction process
- Spiked CyMe₄BTBP + TODGA extraction process
 - Am(III)/Cm(III) separation is possible by the LUCA process

Outlook

- Hot CyMe₄BTBP + TODGA demonstration
- Hot Am(III)/Cm(III) demonstration
- FP 7 ACSEPT 2008-2011 (Actinide reCycling by SEparation and Transmutation)

Acknowledgement

The European Commission is acknowledged for the financial support during

EUROPART (FI6W-CT-2003-508 854) and

ACSEPT (FP-7-CP-2007-211267)

Thank you for your attention...