Studies on Separation of Actinides And Lanthanides by Extraction Chromatography Using 2,6-BisTriazinyl Pyridine

P. Deepika, K. N. Sabharwal, T. G. Srinivasan and P. R. Vasudeva Rao

Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603102 India

Atomic Energy Establishments in India

THREE STAGE NUCLEAR POWER PROGRAM

Fast Breeder Test Reactor Kalpakkam

Radiochemistry Laboratory

Hot Cells

008, Japan

OE

TIIS 7

Separation of MINOR actinides by various techniques

Extractants used in our Laboratory for Co extraction of lanthanides and actinides

- **Truex process ---- CMPO ----- Solvent Extraction**
- Diamides ----- DMDBMA ----- Solvent Extraction [Dimethyl Dibutyl Malonamide]
- TEHDGA --- Tetraethyl Hexyl Diglycoamide -- Solvent Extraction DMDOHEMA ---- Solvent Extraction [DimethylDioctylHexylEthoxyMAlonamide]

Other Techniques

- Extraction Chromatography
- Room Temperature Ionic Liquids
- Supercritical Fluid Extraction
- High Performance Liquid Chromatography

Actínide – Lanthanide Separation

• Bis Triazinyl Pyridine (BTP)

An(III) / Ln(III) SEPARATION BY POLYAZINES

Radiochemistry and Processes Department B. Boullis – Atalante 2004 International Conference, Nimes, june 21-24

Outline

• Introduction

- Lanthanide-Actinide Separation.
- Bis Triazinyl Pyridines (BTPs).
- Advantages of Extraction Chromatography over Solvent Extraction.

Experimental Work

- Synthesis of 2,6-bis(5,6-dipropyl-1,2,4-triazin-3yl)pyridine.
- Preparation of the Extraction Resin.
- Extraction Studies of Am (III) and trivalent lanthanides by XAD-7 impregnated with 2,6bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine.

Conclusions

Introduction

Lanthanide – Actinide Separation

- Need
 - Partitioning and Transmutation (to reduce longterm radiological risks to the environment by transmutation of the minor actinides).

• Difficulty

- Lanthanides and actinides have similar chemical properties due to similar ionic radii.

Bis Triazinyl Pyridines (BTPs)

First reported in 1999 by *Kolarik, Mullich and Gassner* that 2,6-di(5,6-dialkyl-1,2,4-triazin-3-yl)pyridines extract and separate Am(III) and Eu(III) very efficiently as nitrates. *(Solvent Extraction and Ion Exchange, 17(1), 23-22, 1999)*

Limitations of solvent extraction -

- Third Phase formation,
- Need for phase-modifiers,
- Disposal of large volumes of extractants and diluents,
- Tedious multi-stage extraction procedures.

Advantages of Extraction Chromatography

- No third phase formation,
- No need for a modifier,
- Reusability of the synthesized resin,
- Simple and compact equipment,
- Minimal loss of organic solvent.

Experimental Work

Synthesis of 2,6-bis(5,6-dipropyl-1,2,4-triazine-3-yl)-pyridine

"Extraction Studies of Am (III) and trivalent lanthanides by XAD-7 impregnated with 2,6bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine"

Figure : Kinetics of the uptake of Am (III) by nPr-BTP/XAD-7 resin (0.25g nPr-BTP/XAD-7, 0.1M HNO₃, 2M NH₄NO₃, 303K)

• Distribution coefficient (K_d) values increased with increasing time of equilibration and equilibrium is reached in 24 hours.

 \bullet For K_d measurements, we have equilibrated for 3 hours.

Figure: Effect of nitric acid concentration on the uptake of Am(III) by nPr-BTP/XAD-7 resin with and without 2M NH4NO3 (0.25g nPr-BTP/XAD-7, 303K, 3h).

 \bullet K_d values for the extraction of Am(III) from nitric acid with ammonium nitrate are significantly higher.

• The increase of Am(III) adsorption with increasing nitrate concentration can be explained by the following adsorption equilibrium represented by Equation (1),

 $M^{3+} + 3NO_3 + n(nPr-BTP) = M(NO_3)_3 (nPr-BTP)_n$ (1)

Figure : Effect of nitric acid concentration on the uptake of Am(III) and lanthanides by nPr-BTP/XAD-7 resin (0.25g nPr-BTP/XAD-7, 2 M NH₄NO₃, 303K, 3h)

- The lanthanides are not extracted by the resin at any acidity.
- K_d value for the extraction of Am(III) is maximum at 0.1M nitric acid in the presence of ammonium nitrate.

Figure : Effect of nitrate concentration on the uptake of Am(III) and Lanthanides by nPr-BTP/XAD-7 resin (0.25g nPr-BTP/XAD-7, 0.1M HNO₃, 303K, 3h)

The distribution coefficient (K_d) value of Am (III) increases with increase in NH_4NO_3 concentration, which can be explained by equation (1),

 $M^{3+} + 3NO_3^{-} + n(nPr-BTP) = M(NO_3)_3 (nPr-BTP)_n$

OECD 2008, Japan

(1)

[NH ₄ NO ₃]	Separation Factor (K _d Am / K _d Ln)				
Μ	La	Ce	Nd	Eu	Gd
0	192	173	173	173	173
1	2730	5187	5187	66	451
2	2471	7638	1400	43	296
3	8925	8926	8926	27	246
4	1412	937	347	14	92
6	770	465	117	7	52

Table: Separation Factors for Americium-Lanthanide Separations (0.25g nPr-BTP/XAD-7, 0.1M HNO3, 303K, 3h)

Figure : Loading of Am (III) and Eu (III) on to a column of nPr-BTP/XAD-7 resin.

Europium was not retained in the column and up to 99.4% of it was recovered at the loading stage itself. Up to 90% of the Am was retained in the column.

Figure : Elution of Am (III) from nPr-BTP/XAD-7 column with 0.3M DTPA.

- Loaded Am(III) was recovered by passing 0.3 M DTPA solution (pH=4.0).
- 60% of Am was recovered within the first three column volumes.
- Further tailing was observed.

Conclusions -

• nPr-BTP impregnated XAD-7 resin displayed high selectivity for americium and good separation-factors for the separation of other lanthanides from the same.

• Column runs for the separation of americium from europium gave good results with 99.4% Europium being removed in the loading stage itself.

• The elution of Am from the column using DTPA was found to be 60% and efforts are on to improve the same.

Thank You.....