

Effects of Repository Conditions on Environmental-Impact Reduction by Recycling

Joonhong Ahn Department of Nuclear Engineering University of California, Berkeley

OECD/NEA Tenth Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation (10IEMPT),

October 6-10, 2008, Mito, Japan

Objectives

Compare the Environmental impacts of two different repository configurations coupled with fuel cycles

- \Box <u>A water-saturated repository</u> coupled with recycle with PWR-UO₂, PWR-MOX and FR.
- <u>Yucca Mountain Repository</u> coupled with UREX+ and advanced fuel cycle for minor actinide recycle

For these objectives, we have developed models and codes for:

- Quantitatively determining the composition vector of vitrified HLW in a canister for final disposal, and
- Quantitatively estimating radionuclide release rates from failed waste packages for the environmental impact assessment.

High Level Waste Flow

Three Types of Waste Packages

Department of Nuclear Engineering, University of California, Berkeley

% Distribution

UREX1+ Combined with YMR

Models and Codes

Computer codes

ORIGEN Input data for PUREX cases

	PWR UO ₂	PWR MOX	FR (Core/Axial)		
	Cases (1)(2)	Case (3)	Case (4)		
Burn-up	o Conditions				
Fuel com	position before	irradiation (g/M	THM)		
U-234	450	0	0		
U-235	45000	1856	1722/833		
U-236	250	0	0		
U-238	954300	926144	571583/276942		
Pu-238	0	1224	1637		
Pu-239	0	40608	80568		
Pu-240	0	16632	47798		
Pu-241	0	8064	6404		
Pu-242	0	4248	5812		
Np-237	0	0	744		
Am-241	0	1224	2981		
Am-243	0	0	1488		
Cm-244	0	0	1488		
ORIGEN	cross section li	brary numbers			
	(04/(05/(0)	210/211/212	311/312/313 (core);		
	004/005/000	210/211/212	314/315/316 (blanket)		
Thermal	output (MW/M	THM)			
	38	37.7	35.9		
Operating	g days (EFPD)				
	1184	1592	3200		
Discharged burn-up / Core Average (GWd/MTHM)					
	45	60	115/150		
Power allotment (core/axial blanket, %)					
			94.4/5.6		
Capacity factor, C_{factor}					
	0.9 0.8				
Conversion efficiency, C_{eff}					
	0.33		0.42		

	PWR UO ₂	PWR MOX	FR (Core/Axial)
	Case (2)	Case (3)	Case (4)
PUREX	K C onditions		
Cooling t	time before rep	rocessing, T _b (yr)
	3	10	7
Cooling t	ime between re	eprocessing and	d vitrification, T _a (yr)
	1	1	1
Fractions	removed from	HLLW by PU	REX (%)
U	99.5	99.5	99.5
Pu	99.5	99.5	99.5
Np	0	0	99.5
Am	0	0	99.5
Cm	0	0	99.5
Н	100	100	100
С	100	100	100
Ι	99	99	99
Cl	100	100	100
Не	100	100	100
Ne	100	100	100
Ar	100	100	100
Kr	100	100	100
Xe	100	100	100
Rn	100	100	100

ORIGEN Input data for UREX cases

Burn-up Conditions				
for Cases (5) (6-1) (6-2) (6-3)				
Fuel composition before irradiation (g/	MTHM)			
U-235	43000			
U-238	957000			
ORIGEN cross section library	219/220/2			
numbers	21			
Thermal output (MW/MTHM)	40			
Operating days (EFPD)	1250			
Discharged burnup (GWd/MTHM)	50			
Capacity factor, C_{factor}	0.9			
Conversion efficiency, C_{eff}	0.33			

UREX1a+ Conditions				
Cooling time before	r)	15		
Cooling time betwee	en UREX1a+ and	vitrification, T _a (yr)	0	
Fractions removed	from HLLW by UI	REX1a+ (%)		
	Case (6-1)	Case (6-2)	Case (6-3)	
U	95	99	99.5	
Pu	95	99	99.5	
Np	95	99	99.5	
Am	95	99	99.5	
Cm	95	99	99.5	
Tc	95	99	99.5	
Cs	95	99	99.5	
Sr	95	99	99.5	
Н	100	100	100	
C	100	100	100	
Ι	100	100	100	
Cl	100	100	100	
Не	100	100	100	
Ne	100	100	100	
Ar	100	100	100	
Kr	100	100	100	
Xe	100	100	100	
Rn	100	100	100	

Solidification of HLW

Constraints for Optimization

Specifications/Constraints	Water-saturated	YMR
Canister height (m)	1.34	3
Canister outer radius (m)	0.215	0.305
Canister thickness (m)	0.006	0.01
Canister volume, V_c (m ³)	0.15	0.82
Empty canister weight (kg)	100	467
Total mass of a package (kg)	<500	<2,500
Mass fraction of Na ₂ O (wt%)	<10	<10
Mass fraction of MoO ₃ (wt%)	<2	<2
Concentration of Pu (kg/m ³)	<2.5	<2.5
Heat emission (kW/canister)	<2.3	
Maximum temperature in glass (°C)		<400
Volume of vitrified HLW (m ³ /canister)	< V _c	$0.8V_{c} < V < V_{c}$

Graphical representation for the feasible solution space (US vitrification process)

Cooling time before reprocessing and vitrification = 15 years

Results for optimized vitrification

PUREX cases					
	PWR UO ₂	PWR MOX	FR (Core/Axial)		
	Case (2)	Case (3)	Case (4)		
Number of Canisters per MTHM of Fuel (Can/MTHM)					
	1.27	2.00	1.97		

UREX cases						
Number of	f packages for HLV	V generated by UF	REX1a+ processing of			
63,000 MTHM of Fuel						
	Case (6-1) 95%	Case (6-2) 99%	Case (6-3) 99.5%			
	2994	2324	2324			

Waste Package Number vs. Cooling Time (YMR)

- effect of Cs/Sr not significant at longer than 15 years
- choosing 15 yr cooling time ensures minimization of waste package number
- consistent with DOE
 Environmental
 Impact Statement

Environmental Impact per GWyr

Total toxicity index of radionuclides observed outside the Engineered Barrier Systems (EBS)

Its peak value will be referred as the PEI (Peak Environmental Impact)

Mass Balance Equations

Environmental Impact due to Nuclide i

$$I_i[m^3] = \frac{\lambda_{Np} W_i[Ci]}{MPC_i[Ci/m^3]}$$

For mass of nuclide *i* in a single waste package:

$$\frac{dM_{i}(t)}{dt} = -\lambda_{i}M_{i}(t) + \lambda_{i-1}M_{i-1}(t) - F_{i}(t), \ t > 0, \ i = 1, 2, \dots, \ \lambda_{0} \equiv 0,$$

For mass of nuclide *i* in the environment:

$$\frac{dW_{i}(t)}{dt} = -\lambda_{i}W_{i}(t) + \lambda_{i-1}W_{i-1}(t) + NF_{i}(t), \ t > 0, \ i = 1, 2, \dots, \ \lambda_{0} \equiv 0,$$

N: number of packages per GWy

Input data for cases considered

Parameters	Water-	YMR	
	saturated	1 1011 X	
Canister/Package failure time, T _f (yr)		10,000	75,000
Radius of waste package (m)		0.21	
Length of waste package (m)		1.34	
Pore velocity of groundwater in surrounding	ng geologic formations (m/yr)	1	0.77
Porosity of the surrounding medium		10%	10%
Diffusion coefficient in the surrounding me	edium (m²/yr)	3E-2	3E-2
	Se	3.0E-06	1.0E+02
	Zr	1.0E-03	6.8E-07
	Nb	1.0E-01	1.0E-04
	Тс	4.0E-05	high
	Pd	1.0E-06	9.4E-01
	Sn	1.0E-03	5.0E-05
	Cs	high	high
	1	high	high
	Sm	2.0E-04	1.9E+02
Solubility in groundwater (mol/m ³)	Pb	2.0E-03	1.0E-02
	Ra	1.0E-09	2.3E-03
	Ac	2.0E-04	1.9E+02
	Th	5.0E-03	1.0E-02
	Pa	2.0E-05	1.0E-02
	U	8.0E-06	4.0E-01
	Np	2.0E-05	1.6E+01
	Pu	3.0E-05	2.0E-01
	Am	2.0E-04	1.9E+02
	Cm	2.0E-04	1.9E+02
	Si	0.21	2.1

Numerical Results

El per GWy for Direct disposal in watersaturated repository: Case (1)

El of HLW from PWR-UO₂ in water-saturated repository: Case (2)

El per Gwy in water saturated repository

Am and Cm removals lead to a lower PEI for FRs.

Impact of Am-243

Environmental impact per electricity generation vs. Canister Failure Time

Comparison of Total EI for YMR (Different Separation Efficiencies)

Effects of Solubility Uncertainty

•Comparison: CSNF vs. 95% separation efficiency

•At early times, mean EI of HLW greater than that of CSNF

•Low separation efficiency case indistinguishable from CSNF case?

Effects of Solubility Uncertainty

•Comparison: CSNF vs. 99.9% separation efficiency

•Although early part of the HLW curve still within the envelope of CSNF uncertainty distribution, means are distinctly different

Effects of separation of TRU

	(1) PWR UO ₂ spent fuel	Vitrified HLW from PUREX			
Water- saturated repository		(2) from PWR UO ₂ with 99.5% removal for U and Pu	(3) from PWR MOX with 99.5% removal for U and Pu	(4) from FR with 99.5% removal for each actinides	
EIE (m³/GWyr)	1.7E7	1.4E9	7.5E9	8.3E8	
	1	82	440	49	

	(5)	Vitrified HLW from LWR UO ₂ by UREX+		
Yucca Mountain Repository	LWR UO ₂ spent fuel	(6-1) 95% removal for each actinide	(6-2) 99% removal for each actinide	(6-3) 99.5% removal for each actinide
EIE (m ³ /GWyr)	4.9E9	1.2E9	2.3E8	1.2E8
	1	0.24	0.047	0.024

Summary

- Without separation of TRU, the level of the environmental impact normalized by electricity generation would be significantly dependent on repository conditions and solidification matrix.
 - UO2 spent fuel in the Yucca Mountain Repository would cause a greater potential impact than a water-saturated repository, where reducing environments are assumed.
 - In water-saturated environments, uranium oxide is considered to be thermodynamically stable and solubilities of actinides are significantly smaller than those in YMR conditions.
- The environmental impacts per GWyr from vitrified HLW after removal of TRU elements would be similar between both repository conditions.
 - This results from the assumption that borosilicate glass dissolves in a similar rate in either reducing or oxidizing environments due to thermodynamically unstable amorphous structure, and that radionuclides are released congruently with matrix dissolution.
- For the YMR, the effects of separation efficiencies appear proportionally on the environmental impact.