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The US is analyzing fuel cycle options - The
Systems Analysis Campaign provides guidance

 Integrates information from the
diverse technology
development and R&D efforts

 Enables examination of a
diverse set of scenarios
– Evaluate technology alternatives
– Examine deployment options
– Understand dynamics
– Evaluate off-ramps

 Used to define the requirements
for the development and
deployment of the technologies
that are necessary to meet a
mission
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Recent systems analysis activities are focused on system
performance during transition to a closed fuel cycle

 Transition to both 1-tier and 2-tier closed fuel cycles are being
assessed

 Systems dynamics models are used that incorporate feedback
to determine the impacts of system constraints
– Overall nuclear growth envelopes
– Facility throughput restrictions
– Material availability limitations

 Performance metrics are provided for system costs, resource
usage, waste generation
– Models track materials in fuels, waste streams, etc. at the isotopic level
– Sensitivity studies are used to explore impacts of performance

uncertainties
– Sensitivity studies indicate technical performance levels needed to meet

quantitative goals
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Global growth for nuclear energy will increase
with or without CO2 limits

 Global demand for all energy will grow
– Global electricity consumption will increase 5-fold
– Nuclear power will expand global electricity market share by 25%
– Nuclear growth will challenge uranium and waste disposal resources

 Limiting CO2 levels results in less fossil, more nuclear and renewables
– Carbon capture and sequestration technologies are key to fossil market shares
– The more aggressive the CO2 limits, the greater the importance of nuclear
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Nuclear energy is competitive with other sources with or
without CO2 taxes.  Recycle does not change this finding.

 Domestically, nuclear is
competitive with fossil
– Once-through is potentially less

expensive than coal
– Closed fuel cycle is competitive

with coal
– Natural gas prices have greater

uncertainty due to fuel costs

 A U.S. carbon tax helps
nuclear
– Carbon taxes will hit coal hardest
– The uncertainty surrounding

carbon taxes increases
investment risk for all fossil
baseload plants
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A closed fuel cycle will likely cost more than
once-through

 Closed fuel cycles appear to cost ~10% more than Once-Through
– Nuclear reactor and fuel cycle costs have large uncertainties
– The cost distributions overlap

 Measures for closing the cost gap were assessed
– Looked only at measures that may be controlled
– Most involve additional R&D to improve technologies, designs
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Fast reactor deployment is much slower than
predicted by static calculations

 Static calculations show ~60% more fast reactors
– At a TRU conversion ratio of 0.5, static calculations show 36% fast

reactors.
– Dynamic calculations show fast reactor shares of only ~22% by the end

of the century

 Primary factors:
– Separations capacity
– Growth rates
– Conversion ratio
– Cooling time

• Fast reactor fuel type is not important – but location of recycling
facilities is
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Separations capacity drives the deployment of
fast reactors

 If LWR used fuel separations is limited, fuel is “left on the table”
– Nominal cases based on separating all cooled fuel by the end of the century

(except for 63,000 direct disposed)

 Separations timing is less important

Electricity from fast reactors
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The higher the growth rate, the lower the fast
reactor share

 Fast reactor share increases while excess used fuel inventories are
reduced, then levels off into dynamic equilibrium

Percent of nuclear electricity generated by fast reactors
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Closing the fuel cycle changes transuranics
management in several ways

 Total transuranics are reduced
– 1-tier reduces transuranics levels faster than 2-tier

 More transuranics are in reactors or in storage
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Total TRU reductions are due to both TRU
consumed and TRU production avoided

 As conversion ratio increases, TRU avoided becomes dominate
– As growth rate increases, total TRU reductions are less sensitive to CR

(the blue line is flatter)
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Cooling used fuel longer before recycling
reduces TRU available for fast reactors

 Fast reactor fuel type is less important than location of fast reactor
fuel recycling facilities
– Transportation constraints require much longer cooling times for centralized

recycling facilities, tying up TRU in storage instead of in reactors

 

Electricity from fast reactors
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Percent of nuclear electricity generated by fast reactors
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Coordination is needed to avoid excess separated
material inventories at the start of the transition

 Facility sizes can produce
material flow mismatches when
total facility numbers are small

 Technology, regulatory and
funding uncertainties can
impact timing
– Delays in separations, fabrication,

or transportation can result in fuel
shortages

– Delays in reactor fielding can
result in inventory bubbles

– Facility ramp rates, learning
periods also important

 Flexibility is an important tool
– Buffer storage
– LWR MOX capacity
– Temporary facility closures
– Etc.

1-tier scenario excess separated
transuranics with later fast reactor

deployment and no change in separations

Excess Separated TRU in Storage - 1 Tier Case
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Uranium savings are limited during the
transition period

 Closed fuel cycles do not save much uranium by end of century
– Transition rates are too slow to have major impacts
– Dynamic transition again much less than predicted by static calculations

 Fast reactor deployment is the most significant factor
– Higher nuclear growth rates equate to lower uranium savings
– TRU conversion ratios have greatest impact above 1.0
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System loss rates during recycle impact waste
benefits

 Quantitative waste parameter improvement goals are met at system
loss rates per recycle below 0.3%
– Cost/benefit analysis of loss rates is needed
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These studies are being used to inform follow-
on studies

 Assessing the impact of advanced fuel cycle cost differentials
on domestic and global projections of nuclear energy growth

 Assessing phased fuel cycle transition options, including the
initial fielding of mature technologies followed by a later phase-
in of advanced technologies

 Supporting major technology decisions and requirements
development through integrated analyses
– Minor actinides storage vs. disposal trade-off study
– System losses trade-off study
– Waste trade-off studies

 Extending the types and scope of analyses provided
– Impacts of expansion of nuclear energy beyond electricity generation


