Cross section measurements of minor actinides a the n_TOF-Ph2 experiment at CERN

Daniel Cano Ott on behalf of the n_TOF collaboration

daniel.cano@ciemat.es

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Nuclear data for the transmutation of nuclear waste

Transmutation of the Minor Actinides by (n,f) and (n,γ) in new 10¹² nuclear systems, thus reducing: Ciclo abierto Radiotoxicidad (Sv Ciclo cerrado simple: 10¹¹ radiotoxicity inventory 1/100 Reciclado de Pu en LWR Doble strata 10¹⁰ ➤ cooling time 1/1000 1^a Str:Pu+Np 2ª Str: A.M. en ADS 10⁹ 10⁸ TRU homogeneo Pu+AM en Reactor **Computational design tools** Rápido 10⁷ 10⁶ 10⁵ 10⁴ 10^{3} 10^{6} 10 100 Tiempo de enfriamiento (años) Need of accurate& reliable **NUCLEAR DATA**

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Nuclear data: compilation of experimental and/evaluated data describing nuclear properties.

Differential and average reaction cross sections

Particle emission probabilities and energies (γ, e-, α...)
Nuclear structure data (half lives, isomers...)

Needs from various fields and applications:

Transmutation of Nuclear Waste

- Nuclear reactor design and safety assessment
- •Hadron therapy
- •Dosimetry (space, aircrafts, linacs)
- •Shielding design: accelerators, power plants, hospitals...

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Are the nuclear data accurate enough?

How accurately can we answer to the question:

What is transmutation rate of ^{241,243}Am by fission inside an Accelerator Driven System or a fast reactor?

Lets have a look at the evaluated cross section databases: •ENDF

- •JENDL
- •JEFF
- •BROND, CENDL,...

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

²⁴¹Am(n,f) cross section data 95-Am-241(N,F),SIG

Section (barns)

Cross

Incident Energy (MeV)

²⁴¹Am(n,γ) cross section data

ENDF Request 4385, 2008-Sep-26,12:30:32 EXFOR Request: 103561/1, 2008-Sep-26 12:25:17

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

²⁴³Am(n,γ) cross section data ₂₄₃Am(n,γ) cross section data

The reality about Minor Actinide cross sections

•In many cases there is insufficient accuracy (>10%).

- •The systematic uncertainties are sometimes larger than indicated.
- •There exist significant differences between evaluated data libraries.
- •Data for some isotopes/reaction channels are missing.

•Scarce or non-existent covariance data, sometimes "guessed" in absence of experimental information.

Which isotopes, reaction channels and energy ranges are prioritary in the different scenarios?

Result of the available (and ongoing) sensitivity analyses and list of recommedations.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Isotone	Cross- Section	Energy Range	Uncertainty (%)		Isotopo	Cross-	Energy Dongo	Uncertainty (%)				
isotope			Initial	Required	isotope	Section	Energy Kange	Initial	Required			
U238	σ _{capt}	24.8 - 9.12 keV	9.4	1.8	Am242m	σ _{fiss}	1.35 - 0.498 MeV	23.4	21.4			
		9.12 - 2.03 keV	3.1	1.8			498 - 183 keV	16.5	6.3			
U238		19.6 - 6.07 MeV	29.3	9.0			183 - 67.4 keV	16.6	4.7			
		6.07 - 2.23 MeV	19.8	2.0			67.4 - 24.8 keV	16.6	4.8			
		2.23 - 1.35 MeV	20.6	2.1			24.8 - 9.12 keV	14.4	5.6			
	Oinel	1.35 - 0.498 MeV	11.6	2.3			2.04 - 0.454 keV	11.8	5.9			
		498 - 183 keV	4.2	3.8	Am243	σ _{fiss}	6.07 - 2.23 MeV	11.0	2.3			
		183 - 67.4 keV	11.0	4.2			2.23 - 1.35 MeV	6.0	1.9			
		1.35 - 0.498 MeV	18.2	6.6			1.35 - 0.498 MeV	9.2	1.7			
Pu239		498 - 183 keV	11.6	4.4	Am243	σ _{inel}	6.07 - 2.23 MeV	17.9	4.9			
		183 - 67.4 keV	9.0	4.0			2.23 - 1.35 MeV	35.3	3.9			
	Ocapt	67.4 - 24.8 keV	10.1	4.2			1.35 - 0.498 MeV	42.2	2.3			
		24.8 - 9.12 keV	7.4	3.8			498 - 183 keV	41.0	3.7			
		9.12 - 2.03 keV	15.5	3.2			183 - 67.4 keV	79.5	3.7			
		6.07 - 2.23 MeV	4.8	2.9			67.4 - 24.8 keV	80.8	12.4			
		2.23 - 1.35 MeV	5.7	2.6	Cm244	σ _{fiss}	6.07 - 2.23 MeV	31.3	3.0			
Pu240	$\sigma_{\rm fiss}$	1.35 - 0.498 MeV	5.8	1.6			2.23 - 1.35 MeV	43.8	2.6			
		498 - 183 keV	3.9	3.7			1.35 - 0.498 MeV	50.0	1.5			
		2.03 - 0.454 keV	21.6	11.8			498 - 183 keV	36.5	4.0			
		6.07 - 2.23 MeV	14.2	5.0			183 - 67.4 keV	47.6	7.3			
		2.23 - 1.35 MeV	21.3	3.9	2007 Symposium on Nuclear Data							
		1.35 - 0.498 MeV	16.6	2.1								
		498 - 183 keV	13.5	1.7	Νοι	November 29 - 30. 2007						
Pu241	σ _{fiss}	183 - 67.4 keV	19.9	1.7	RICOTTI Convention Center Tokai Ibaraki							
		67.4 - 24.8 keV	8.7	1.9	1.10							
		24.8 - 9.12 keV	11.3	2.0	by Aliberti, Oct. 2007							
		9.12 - 2.03 keV	10.4	2.1								
		2.03 - 0.454 keV	12.7	2.7								
		454 - 22.6 eV	19.4	5.4								

ABTR, SFR, EFR, GFR, LFR, ADS: Uncertainty Reduction Requirements Needed to Meet Integral Parameter Target Accuracies

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

	ID	Target	Reaction	Quantity	Energy range		Acc	Sec.E/Angle
EUROPEAN COMM	<mark>s</mark> 432	95-AM-241	(n <i>,</i> g),	(n,tot), SIG	thermal	eV	5%	
CANDIDE, 10 April 2008,	vi 433	95-AM-243	(n <i>,</i> f)	n, spectrum	Eth	10 MeV	10%	
	434	96-CM-244	(n <i>,</i> f)	n, spectrum	Eth	10 MeV	10%	
List of	435	92-U-238	(n <i>,</i> n')	SIG	67.4 keV	19.6 MeV	2%	Emis spec.
	436	94-PU-238	(n <i>,</i> f)	SIG	9.12 keV	6.07 MeV	3%	
	437	94-PU-238	(n <i>,</i> f)	nu	67.4 keV	1.35 MeV	2.50%	
entries	438	95-AM-241	(n <i>,</i> f)	SIG	183 keV	19.6 MeV	1.20%	
	439	95-AM-242	(n <i>,</i> f)	SIG	9.12 keV	1.35 MeV	4.70%	
	440	95-AM-243	(n,n')	SIG	24.8 keV	6.07 MeV	2.30%	Emis spec.
	441	96-CM-242	(n <i>,</i> f)	SIG	67.4 keV	6.07 MeV	32%	
	444	96-CM-244	(n,f)	SIG	67.4 keV	6.07 MeV	1.50%	
	-445	- 83-8 -209 -	-–(n,n') –-	s l c	-0.498-MeV-	-2.23-Me∀	- 2.80% -	-Emis-spee
	446	96-CM-245	(n <i>,</i> f)	SIG	0.454 keV	6.07 MeV	2.90%	
	447		- (n ,a) -	sig	0.498 MeV	2.23 MeV	2.70%	"
	448	11-NA-23	(n <i>,</i> n')	SIG	0.498 MeV	1.35 MeV	10.50%	Emis spec.
	449	6-C-12	(n <i>,</i> g)	SIG	0.54 eV	4 eV	5%	
	450	<u>6-C-12</u>	<u>(n,g)</u>	SIG	<u>6.07 MeV</u>	<u>19.6 MeV</u>	7.10%	
	451	94-PU-239	(n <i>,</i> g)	SIG	0.1 eV	0.54 eV	0.90%	
	452	94-PU-241	(n <i>,</i> g)	SIG	0.1 eV	0.54 eV	2.40%	
	453	8-0-16	(n,g)	SIG	2.23 MeV	19.6 MeV	9.90%	
	454	26-FE-56	(n <i>,</i> n')	SIG	0.498 MeV	19.6 MeV	1.50%	Emis spec.
PRI - JEEDOC1235	455	94-PU-241	(n <i>,</i> f)	SIG	Thermal	6.07 MeV	1.50%	

HF

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

Where can these cross sections be measured?

Daniel Cano Ott - Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

Available neutron time of flight facilities worldwide

- I. Photoproduction neutron sources (GELINA – Europe, ORELA & RPI – USA) + reactors (KURRI - Japan...):
- Good energy resolution.
- Low intensity per accelerator pulse / high repetition rate -> low duty cycle.
- Need of "massive" samples (several 100 mg) -> STABLE ISOTOPES

II. Spallation neutron sources (LANSCE-LANL - USA and n_TOF @ CERN - Europe)

- Intrinsically worse energy resolution.
- High intensity at even low repetition rates -> high duty cycle, favorable reaction rate to decay rate ratios, even for high intrinsic activities (1 GBq).
- Samples can have masses as low as 1 mg.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

(A Google-view of) The n_TOF facility at CERN

The n_TOF collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Margues¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Margues³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti¹¹, C.Rubbia¹⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴. M.Wiescher²⁹. K.Wisshak⁸

Funded by the EC 5th Framework programme, CERN and National Funding Agencies.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

n_TOF beam characteristics

The n_TOF facility was built and commissioned in a period of 2 years and provides unique features for measuring capture and fission cross sections of unstable (and also stable) isotpes.

Performance Report, CERN-INTC-2002-037, January 2003, CERN-SL-2002-053 ECT

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

A fully digital DAQ!

Daniel Cano Ott - Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

shape analysis Pulse and pileup reconstruction for the BaF₂ detectors. E. Berthomiueux et al. To be submitted to NIM-A.

0

2000

4000

150

100

50

Digitised BaF₂ signals

6000

Pulse shape reconstructions of the BaF2 signals

8000

10000 time (ns)

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Advanced detectors

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

n_TOF fission detectors

Position sensitive Parallel Plate Avalanche Chambers. Allow to reconstruct the trajectories of the fission fragments.

Tassan-Got et al. To be submitted to NIM-A

Fast induction chamber (FIC). Large number of samples inside a compact detector.

P. Cennini et al. Submitted to NIM-

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Nuclear structure: TAC as a γ-ray spectrometer

Analysis of the calorimeter data and comparison to realistic Monte Carlo simulations of its response to the EM cascades.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

The n_TOF Total Absorption Calorimeter (TAC) for (n,γ) measurements

•40 BaF₂ crystals covering 95% of 4π.
•98% detection efficiency for capture γ-ray cascades.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

The experimental programme

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Capture

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238U

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments 2002-4

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

ano Ott – Information Exchange Meeting on Ind Transmutation, Mito - Japan, October 2008

(n,f) cross sections

Measurements with PPACs. L. Tassan-Got et al. In preparation.

20

15

5

0

 $\sigma_{f}\left(\text{barn}\right)$ 10

C. Paradela et al. In preparation

Fission measurements with the Fission Ionization Chamber (FIC) - 2/2

(n, γ) cross section measurements with C₆D₆ detectors

F.Gunsing, Nuc. Data. Conf.-2007 G. Aerts et al. (n_TOF Collaboration), Phys. Rev. C 73, 054610 (2006) **at**

^{204,206,207}Pb, ²⁰⁹Bi (n,γ) measurement

C.Domingo-Pardo et al. (n_TOF Collaboration), Phys. Rev. C 74/75, 2006/7

^{237}Np (n, γ) measurement with the TAC

43.3 mg, 1.29 MBq

MINISTERIO DE EDUCACION Y CIENCIA

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

²⁴⁰Pu (n,γ) measurement

51.2 mg, 458 MBq

C. Guerrero et al. (n_TOF Collaboration), Proc. Int. Conf. Nuc. Data for Sci. and Tech. 2007, Nice.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

^{243}Am (n, γ) measurement with the TAC

First (n,y) measurement EVER. 10 mg, 75 MBq

D. Cano-Ott et al. (n_TOF Collaboration), Proc. Int. Conf. Capture Gamma-Ray Spec. 2005, Santa Fe.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

^{233,234}U (n,γ),^{233,234,235}U(n,f) measurement

W.Dridi, PhD-Thesis, 2006

C.Paradela, PhD-Thesis, 2005

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

Future plans

Daniel Cano Ott - Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

n_TOF experiments 2008-...

Capture

Stable Isotopes:

Mo,Bi, Ru: r-process residuals

Fe, Ni, Zn, Se: s-process and structural materials

Radioactive Isotopes:

```
<sup>234,236</sup>U, <sup>231,233</sup>Pa: Th/U fuel cycle
```

^{239,240,242}Pu,^{241,243}Am, ²⁴⁵Cm: transmutation of minor actinides (FP-6 project

IP-EUROTRANS/NUDATRA)

Fission

²³¹Pa,^{234,235,236,238}U

²⁴¹Pu,²⁴⁵Cm,^{241,243}Am, ^{244,245}Cm

²³⁴U: study of vibrational resonances below the bareer

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Angular correlations between the fission fragments

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Making better measurements at n_TOF-Ph2

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

Improvements of the future measurements

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

The (future) second n_TOF experimental area

Flight-path length : ~20 m at 90 respect to p-beam direction 50 times more intense!

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Summary and conclusions

•Differential neutron cross sections for Minor Actinides need to be improved.

•n_TOF @ CERN is a unique facility for it:

•High performance detectors for fission (PPAC and FIC) and capture (TAC) cross section measurements

•Fully digital Data Acquisition System.

•Already proven for Np & Pu!

•1 mg mass samples of highly radioactive materials.

We are ready to do so: the n_TOF operation was interrupted in 2004 and will restart in 2008 (3rd of November)!

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008

A brief history of the n_TOF facility

- 1997 Concept by C.Rubbia validated by TARC exp. [CERN/EET/Int. Note 97-19]
- May '98 Further development of the initial idea towards a working facility [CERN/LHC/98-02+Add]
- Aug '98 CERN-GELINA joint Letter of Intent [CERN/SPSC/98-15, I220]
- 1999 Construction started
- Oct 2000 First proton on the spallation target
- 2001 to 2004 Experimental program of n_TOF-Ph1 (NTOF-ND-ADS 5th European Union Framework Programme).
- 2005 to 2007 Shutdown due to the LHC startup + modifications of the spallation target
- June 2007/January 2008 n_TOF Review Pannels. Green light for a new target!
- December 2007 / January 2008 Inspection, removal and analysis of the old target.
- March 2008. MoU signed by CERN.
- November 2008 Start of the n_TOF-Ph2 commissioning.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat ^G

The n_TOF data acquisition system

n_TOF has been the first neutron beam line worldwide proposing, building and operating a fully digital DAQ. Nowadays, it is becoming a standard at every laboratory.

The n_TOF DAQ consists of ~50 flash ADC channels with 8 bit amplitude resolution and sampling of 500 MSample/s.

The full history of EVERY detector is digitised during a period of 16 ms (0.7 eV < E_n < 20 GeV) and recorded permanently on tape.

The system has nearly zero dead time.

Simple electronics but everything needs to be done by software.

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

The new spallation target commissioning

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Better experimental conditions

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008 Ciemat

Isotope	Reaction	Energy range	Original Uncertainty (%)	Required accuracy (%)
²⁴¹ Am	σ_{capt}		40	7.5
			40	5.5
			40	5.1
			20	5.9
			20	6.3
			20	6.9
	σ_{fis}		20	5.6
			20	4.6
			20	3.9
²⁴³ Am	σ_{capt}			
. Yoshida, SND200 VPEC SubGroup 2)6-IV.02-1. 240Pu(r 9, fi\$tp://www.nea.	ı,γ) cross section fr fr/html/science/wpe	om c/index.html	

Revisit the resonance capture in ²³⁵U, ²³⁸U

Daniel Cano Ott – Information Exchange Meeting on Partitioning and Transmutation, Mito - Japan, October 2008