ON THE EFFECTIVENESS OF THE ELSY CONCEPT WITH RESPECT TO MINOR ACTINIDES TRANSMUTATION CAPABILITIES

Giacomo Grasso¹, Carlo Artioli², Stefano Monti², Federico Rocchi ${ }^{1}$ and Marco Sumini ${ }^{1}$

Carlo.artioli@bologna.enea.it

1) Nuclear Engineering Laboratory (LIN) of Montecuccolino, DIENCA, University of Bologna, Italy
2) Italian National Agency for New Technologies, Energy and the Environment (ENEA), Italy

Actinide and Fission Product Partitioning and Transmutation
Tenth Information Exchange Meeting Mito, Japan, 6-10 October 2008

Italian Agency for new Technologies, Energy and Environment, Advanced Physics Technology Division
Via Martiri di Monte Sole 4, 40129 Bologna, Italy

The "Adiabatic" Core Concept

* Equilibrium vector

Constraints

Pu Equilibrium:

- vector (Pu*) gets richer in even isotopes and poorer in odd ones
\rightarrow criticality decreased
\rightarrow fuel must be more enriched in Pu
\rightarrow Breeding decreases
MAs Equilibrium:

- its concentration must be acceptable for the system dynamics

Vectors:

Plutonium		Uranium		Americium		Curium		Neptunium	
Isotope	[${ }^{\mathrm{W}} / 0$]	Isotope	[${ }^{\mathrm{W}} / 0$]	Isotope	[${ }^{\mathrm{W}} / 0$]	Isotope	[${ }^{\mathrm{W}} / 0$]	Isotope	[$\left.{ }^{\prime} / 0\right]$
Pu238	2.333	U234	0.003	Am241	82.118	Cm243	1.533	Np237	100
Pu239	56.873	U235	0.404	Am242F	0	Cm244	69.763	Np239	0
Pu240	26.997	U236	0.001	Am242M	0.277	Cm245	26.588		
Pu241	6.104	U238	99.583	Am243	17.605	Cm246	2.074		
Pu242	7.693					Cm247	0.039		

ELSY - European Lead-cooled SYstem

Main features:
-lead cooled;

-1500 Mwth;
-innovative integrated compact design:
reduction "parasitic" material (wrapperless)
reduced H and D for sloshing.

The Equilibrium Concentration

N Each Actinide isotope evolves according to a rather exponentia behavior, due to balancing production (by transmutation) and removal (by fission) mechanisms.
Therefore expressing their behaviour in term of velocity of relative variation (positive or negative Δ \% /year) could be rather misleading.
The behaviour is indeed characterized by -Equilibrium (asymptotic) concentration and -Time constant
The equilibrium concentration is ruled by the reactor spectrum.

ELSY MAs Concentrations at Equilibrium

$$
C(t)=C_{0}\left(1-e^{-t / \tau}\right)
$$

(by M. Sarotto on the ELSY cycle initially loaded with pure MOX, MAs free).

Acceptable concentration of Mas for the system dynamics!

	$\mathrm{C}_{0}(\mathrm{MA} / \mathrm{HM})$	T [y]
Am	$7.60 \mathrm{E}-03$	7.9
Cm	$2.75 \mathrm{E}-03$	62.5
Np	$9.23 \mathrm{E}-04$	2.2
TO	$1.13 \mathrm{E}-02$	

ELSY adiabatic cycle analysis

Fuel Cycle hypothesis:

- 4 years fuel residence in core;
- refueling of $1 / 4$ of the fuel each year.

Criticality swing during cycle

Mass flows (kg/y, LF 80\%)

* Equilibrium content

High BU is required!!

Conclusions

- The viability of an adiabatic core has been demonstrated for the ELSY Lead Fast Reactor (as far as the MA equilibrium concentration is concerned);
- The immobilization of the MAs equilibrium mass within the system inhibits the further production of Long-Lived Radioisotopes (LLRs);
- The input stream is only cheap U natural or depleted, while
- the output stream results in FPs only + losses, strongly reducing the radiotoxicity load in the final disposal, which could be ruled by the losses;
- Therefore to decrease the losses, along the efficiency of the process, a high $B U$ is required for reducing the number of reprocessing steps.

Next steps

- The full viability must be demonstrated using the Pu equilibrium vector at in a system with a unitary BR.

