

DESIGN, SAFETY AND FUEL DEVELOPMENTS FOR THE EFIT ACCELERATOR DRIVEN SYSTEM WITH CERCER AND CERMET CORES

W. Maschek¹, C. Artioli², X. Chen¹, F. Delage³, A. Fernandez-Carretero⁴, M. Flad¹, A. Fokau⁷, F. Gabrielli¹, G. Glinatsis², P. Liu¹, L. Mansani⁵, C. Matzerath Boccaccini¹, C. Petrovich², A. Rineiski¹, M. Sarotto², M. Schikorr¹, V. Sobolev⁶, S. Wang¹, Y. Zhang⁷

 ¹ Forschungszentrum Karlsruhe, IKET, P.O.Box 3640, D-76021 Karlsruhe, Germany ² ENEA, Via Martiri di Montesole 4, IT-40129 Bologna, Italy
³ Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint Paul Lez Durance, France ⁴ JRC Institute for Transuranium Elements P.O. Box 2340, D-76125, Karlsruhe, Germany ⁵ AnsaldoNucleare, Corso F. M. Perron 25, I -16161 Genoa, Italy
⁶ SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol, Belgium ⁷ KTH, Dpt. of Nuclear and Reactor Physics, S-10691Stockholm, Sweden

N Agence pour l'énergie nucléaire A Nuclear Energy Agency

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

- I: Introduction
- II: Fuels for Accelerator Driven Transmuters, Generation of the Fuel Data Base in DM 3 AFTRA and Recommendations on Fuels and Safety Limits
- III: The EFIT (European Facility for Industrial Transmutation) as CERCER and CERMET Option
- **IV: AFTRA Safety Analyses for CERMET Cores**
- **VI: Conclusions**

I: Introduction

- EFIT, the European Facility for Industrial Transmutation developed within 6th FP EU EUROTRANS
- The Domain DM1 (DESIGN) responsible for overall design, integration and safety of EFIT
- The Domain DM3 (AFTRA) responsible for the fuel assessment and development
- AFTRA also involved in core design activities and safety studies for assessing individual fuels and provide recommendation on fuels
- Both CERCER and CERMET EFIT cores have been developed
- The CERCER core has been chosen as the reference core by DM1 and most extensive investigations on design and safety concentrate on this core
- The CERMET core has alternatively be developed by AFTRA

SIXTH FRAMEWORK PROGRAMME

Selection Criteria:

- Oxide fuels because of vast European experience
- Fabrication
- Feasibility: matrix volume fraction > 50%
- Clad and coolant compatibility
- Safety behavior
- Coolant void worth
- Reactivity loss
- Burnup
- Transmutation capability
- Reprocessing (aqueous)

Visual aspect and microstructure of a Pu_{0.23}Am_{0.25}Zr_{0.52}O₂ Mo 60 vol% pellet

- Solid Solution Fuel
 - (Pu,Am,Cm, Zr)O_{2-x} or (Pu,Am,Cm,Th)O_{2-x}
- CERMET
 - (Pu,Am,Cm)O_{2-x} + Mo, Mo⁹², W, Cr or V
- CERCER
 - (Pu,Am,Cm)O_{2-x} + MgO

Final AFTRA Recommendation :

- 1) Mo-92 CERMET because of superior safety behaviour
- 2) Backup solution : MgO CERCER because of better neutronic performance

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Defence-in-Depth Categorization of Plant Conditions :

- Requirement of ,no melting' up to DBC Category 4 (restrictive limit taken because of uncertainties)
- Main reason for AFTRA recommendation for CERMET motivated by safety concerns in the light of limited data and phenomenological uncertainties in high temperature region (,melting' as composite disintegration, eutectic formation,.... at much lower temperatures than MOX)

		EFR MOX	PDS-XADS MOX	CERCER	CERMET
"Melting"	Matrix	2946 K	3006 K	2130 K [*]	2896 K
temperature	Fuel	2740 K	5000 K	2450 K	2450 K
Category 1	No	2504 K	2270 K	1750 K	2300 K
	melting/disintegration				
Category 2	No	-	2520 K	1850 K	2350 K
	melting/disintegration				
Category 3	No	-	2770 K	1950 K	2400 K
	melting/disintegration				
Category 4	Fuel local (partial)	2946	2770 K	1950 K	2400 K
	melting for MOX (EFR)				
	No				
	'melting' for PDS-				
	XADS and CERCER &				
	CERMET				
DEC	Limited up to extended	2946 K	3023 K	2130 K	2450 K
	'melting'				

• Matrix evaporation limit

Categorization of Fuel Limiting Temperatures (BOL Fuel)

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Specific CERCER Related Problems

Fig. II.2 Temperature dependence of theoretical conductivity of fuel from batch n°1. Comparison with MgO and calculated values /1/

- MgO shows a significant decrease in the thermal conductivities at higher temperatures (1500 K) – CEA measurement
- Irradiation leads to further deterioration

- MgO shows tendency for disintegration at higher temperatures - Knudsen cell tests ITU
- Safety behavior under un-clad conditions not known
- Potential for fuel/matrix separation

EUROTRANS Experiments : FUTURIX-FTA, HELIOS and BODEX

- Demonstration of the fabrication feasibility
- Determination of material properties
- FUTURIX- FTA : Irradiation behaviour in fast neutron environment for oxide, nitride, metallic fuels – for EUROTRANS only CERMET (Phenix)
- HELIOS : Helium release mechanisms & swelling in MA fuels (HFR)
- BODEX : Helium build-up and release mechanisms on inert matrices
- Problem : Results of experiments expected at end of EUROTRANS

ELMHOLTZ

ydh ginsch af t

Further Safety Related Boundary Conditions given by Clad and Pb Coolant

T91 Clad

- Derivation of failure data based on LMP
- Uncertainties in LMP for fast transients
- Uncertainties under HLM conditions and irradiation
- Other failure modes not investigated

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

EFIT :

 GESA treated clad without

conductivity

layers

design

reducing oxide

Use of optimized

clad for EFIT

Lead Coolant

III : The EFIT (European Facility for Industrial Transmutation)

- Power = 400 MWth
- Beam : 800 MeV, 20 mA
- ➢ Keff = 0.97
- Pool type reactor with hot leg pump
- No intermediate loop
- Pb coolant
- T-in / T-out = 673/753 K
- Fuel : CERCER & CERMET
- ➤ Clad = T91

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

HELMHOLTZ

Boundary Conditions for CERCER Core :

- 3 core zones for power flattening
- Matrix ratio : 57 : 50 : 50 % / → Max lin. pow. ≅ 200 : 180 : 180 W/cm
- Max. fuel operating temperature 1650 K
- Max clad operating temperature 823 K
- Lead coolant (velocity ~ 1 m/s; T_{in} = 673 K; T_{out} = 753 K)
- Residence time 3 years → Pb corrosion could define limit → GESA treatment !!!
- Limited reactivity loss over 3 years (constant beam power requirement)

The CERCER EFIT Operational and Safety Data

140

∆Pu / Pu (BOC) ≅ -0,7%

2

120

HELMHOLTZ **GENEINSCHAFT**

und Universität Karlsruhe (TH)

The CERMET EFIT Transmutation Concept

Axial fuel, clad and coolant temperatures in peak power subassembly

AFTRA Mo-92 CERMET Core :

- CERMET core fits into overall design of EFIT given by ANSALDO & ENEA (CERCER EFIT)
- Due to less favourable neutronic characteristics of Mo-92 (higher n-absorption) Pu/MA ratio has to be increased if same design parameters (pin, fuel/matrix volume fractions, subcriticalty) are taken as in CERCER core
- High Pu/MA ratio leads to less MA incineration & stronger reactivity loss
- Solution to achieve low Pu/MA : increase of fuel volume ratio via thicker pins respecting thermalhydraulic and clad conditions
- ,Fat' pins no problem for CERMET because of high thermal conductivity – safety assured
- High MA incineration achieved but 42:0 strategy slightly violated
 - Low reactivity swing over burn-up

Pin number per SA	168+1	91/Op 1	61/Op 1	61/Op 1 + thicker pins in outer zone	
Pu/MA atom ratio over all	46/54	40/60	35/65	35/65	
Fuel vol fraction in the core/the outer zone	26.73 %	29.79 %	31.24 %	31.24%/35.75%	
k _{eff} initial	0.9820	0.9724	0.9428	0.9667	
$\mathbf{k}_{\mathrm{eff}}$ after 3 years	0.9593	0.9625	0.9455	0.9660	
Pu initial mass	3055 kg	2966 kg	2726 kg	2899 kg	
MA initial mass	3610 kg	4479 kg	5056 kg	5377 kg	
Pu consumption [kg/TWhth]	5.71	-1.06	-7.95	-7.22	
U consumption [kg/TWhth]	-0.48	-0.49	-0.50	-0.51	
Am consumption [kg/TWhth]	46.80	54.72	63.40	62.40	
Cm consumption [kg/TWhth]	-9.70	-10.70	-12.27	-11.76	
Np consumption [kg/TWhth]	0.86	0.96	0.60	0.44	
MA consumption [kg/TWhth]	37.96	44.98	51.73	51.08	

Reactivity swing as function of (Pu/MA) ratio

CERMET core safety parameters

Note : Void worth values given in tables serve as indicators (similar as in SFR safety)

- Currently extensive and paramount safety analyses under way for CERCER EFIT
- For CERMET EFIT only limited analyses performed for most important transients to identify key safety issues of CERMET and identify differences to CERCER
- General impact of U-free fuels on global core dynamics and safety :
 - No prompt (negative) feedback effects (Doppler)
 - Strong delayed (positive) feedback effects by high reactivity worths (coolant void worths generally larger than subcriticality)
 - Deteriorated kinetics parameters

- Subcriticality could be eliminated (in contrast to Doppler)
- Subcriticality is essential and is 'the' stabilizing physical mechanism

Safety Concern :

- Under DEC safety conditions
- Elimination of significant part of subcriticality in case of core degradation
 - ➔ Potential for power excursion
 - Analyses indicate the potential for void consumption under severe conditions

Mo-92 CERMET 400 MWth EFIT low power density core

- > 3-zone core with low power density of ~ 250 MW/m³
- Natural convection flow ~ 40 %
- Slight power increase by 1.7 % due to the positive coolant feedback
- No pin failures
- Max. fuel temperatures far below the failure limits
- Max. clad temperatures (1000K) below failure limits (creep)

SIMMER-III Analyses of ULOF

- Top : Power and reactivity trace
- Bottom : Fuel, clad, coolant temperatures

Mo-92 CERMET 800 MWth EFIT high power density core

- > 3-zone core with high power density of ~ 500 MW/m³
- Power stretching to increase transmutation performance
- In-pin pressure = 30 bars
- Investigation of pin failure and failure propagation
- > Pin failure & void propagation & power surge
- Max. clad temperatures (1250K) above failure limits (creep)
- Coherence of clad & coolant temperatures under ULOF conditions lead to propagation potential

SIMMER-III Analyses of ULOF

- Top : Power and reactivity trace
- Bottom : Void distribution

KIT – die Kooperation von

und Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe GmbH

Mo-92 CERMET EFIT 400 MWth low power density core

- > The innermost SA-ring is blocked
- > UBA outcome depends on many parameters :
 - Gas plenum pressure, clad failure temperature (gas release), clad loss of mechanical strength, clad melting, fuel pin break-up, pellet/particle behavior, upper structure behavior
- Gas blow-down causes short reactivity/power increase due the positive void feedback but rewetting prevents coherent failure propagation
- Reactivity/power decrease in this special case due to fuel sweep-out from the blocked core region
- Investigations show that realistically subassembly damage propagation to be expected until opening of larger fuel escape paths without power excursion
- Note : phenomenology independent of 2D or 3D simulation

SIMMER-III Analyses of UBA

Top : Power and reactivity trace

G-103%(約44)

- CERCER EFIT developed as reference design option
- CERMET EFIT offers alternative, especially because of safety performance
- Both CERCER and CERMET cores offer good transmutation performance
- Future work on cores with different transmutation strategies
- Further design optimization and assessment of power upgrading option
- For fuels, the irradiation results of FUTURIX, BODEX and HELIOS are urgently awaited
- Based on current analyses and knowledge, fuels generally do not pose limit on design and safety, but the T91 clad
- > CERMET fuel has very large margins to failure
- Limited knowledge on fuel behavior under irradiation, transient and high temperature conditions; 'microphysics' of fuel must be understood and modeled in codes

- For ADTs, high coolant reactivity feedback and lack of Doppler are features to consider in safety analyses
- Massive voiding only in case of extensive pin failures or introduction of steam/water after a SGTR accident with coolant-coolant interaction (CCI)
 - For current EFIT design SIMMER analyses do not show massive pin-topin failure propagation
 - For current design SIMMER analyses do not show introduction of steam into the core after a SGTR
- Needs for understanding fuel behavior under irradiation and impact on operational conditions, transients and accidents
- > Needs for understanding 'pin failure' under various transient conditions
- T91 creep failure data (short time phenomena, high temperature) and other clad failure mechanisms to be investigated
- > Needs for extensive transient tests of advanced fuels and clad
- > Needs for code development

