Core Performances and Safety Implications of TRU Burning Medium to Large Fast Reactor Core Concepts

The 10th IEMPT Mito, Japan 6-10 October 2008

Hoon Song, Sang-Ji Kim, Jinwook Jang, Yeong-II Kim

Outline

Status of Spent Fuel Storage in Korea

On-site SF storage limit will be reached from 2016Decision making process for interim SF storage

	As of	December	Expansion Plan		
NPP Sites	Cumulative Amount (MTU)	Storage Capacity (MTU)	Year of Saturation	Storage Capacity (MTU)	Year of Saturation
Kori	1,623	2,253	2016	2,253	2016
Yonggwang	1,491	2,686	2016	3,528	2021
Ulchin	1,214	1,642	2008	2,326	2018
Wolsong	5,092	5,980	2009	9,155	2017
Total	9,420	12,561		17,262	

Draft Action Plan for SFR Development

□ Prepared by MEST in December 2007

□Finalization process is on-going

Objectives

Investigate TRU burning capability from Medium to Large Fast Reactor Cores

- 600, 1200 & 1800 MWe
- Core performances
- Reactivity coefficients

□Identify the most limiting factor in scaling up core concepts

- Provide guidance to future R&D directions for economic burning of TRU
- Achieve maximum benefit in the view point of size of economy

Design Constraints and Targets

	TRU Burner
	-TRU enrichment \leq 30 wt%
Design	-Peak fast neutron fluence < 5.0x10 ²³ n/cm ²
Constraints	-Maximum linear heat generation < 350 W/cm
	-Maximum cladding inner wall temperature < 650 °C
	- Maximum pressure drop < 0.15 MPa
Design	- TRU conversion ratio ~ 0.6
Target	- Sodium void worth < 7.5 \$

Design Approaches

□Single enrichment

- Changing cladding thicknesses for power flattening
- To reach TRU enrichment close to the target 30 wt%
- Enhance TRU burning than enrichment split approach

□For a consistent comparison with three power levels

- Region-wise cladding thicknesses are the same
- Make similar linear power ~ 180 W/cm
- Adjust active core height to reduce sodium void worth
- Adjust pitch to diameter ratio to reduce max. pressure drop

Calculation Methods (I)

– REBUS3 : 25 groups, Hex-Z

Calculation Methods (II)

□Core physics parameter calculation

- Neutron flux calculation
 - DIF3D: hex-z model, coarse-mesh nodal diffusion approximation
- Reactivity parameter calculation
 - PERT-K : First order perturbation theory
 - BETA-K : Beta-effective

Layout of the Designed TRU Burners

Design Parameters

Active core heights are reduced as power level increases to reduce the sodium void worth

Core shapes tend to be pancake as power level increases

	600MWe	1,200MWe	1,800MWe	
Coolant Inlet/Outlet Temperature (°C)	390/545			
Number of Fuel Assemblies	336	786	1230	
Assembly Pitch (cm)	16.1	15.9	15.9	
Fuel Outer Diameter (mm)	7.0			
Pin Pitch (mm)	8.89	8.79	8.79	
P/D Ratio	1.270	1.256	1.256	
Cladding Thickness (mm) Inner/Middle/Outer	1.05/0.91/0.77			
Active Core Height (cm)	85.0	73.5	70.0	
Eq. Core Diameter (m)	3.09	4.68	5.86	
Eq. Reactor Diameter (m)	4.51	6.31	7.61	

Core Performances

	600MWe	1,200MWe	1,800MWe	
Charged TRU (wt%)	29.92	29.16	28.92	
Conversion Ratio (Fissile/TRU)	0.74/0.57	0.76/0.58	0.76/0.59	
Burnup Reactivity Swing (pcm)	3,671	3,512	3,508	
Cycle Length (EFPD)	332	332	332	
Sodium Void Worth (BOEC/EOEC)	6.68/7.28	6.91/7.52	6.87/7.55	
Peak Fast Neutron Fluence (n/cm ²)	4.64	4.31	4.42	
Max. Pressure Drop (MPa)	0.156	0.136	0.134	
Max. Cladding Inner Wall Temp.(°C)	591	576	572	
Average Linear Power (W/cm)	180.4	178.1	179.1	
Power Peaking Factor	1.52	1.48	1.55	
TRU Consumption Rate (kg/cycle)	201.4	384.9	569.5	

TRU Consumption Rate

TRU consumption rate is increased almost the same rate
Little preference at any power level with the same TRU enrichment

Reactivity Coefficients

□Core with an increased power rating

- Less negative axial expansion coefficient
- More negative radial expansion coefficient
- Constant sodium density coefficient

	600 MWe		1,200 MWe		1,800 MWe	
	BOEC	EOEC	BOEC	EOEC	BOEC	EOEC
Doppler coefficient (pcm/ °C)	-804.5 T ^{-1.113}	-801.6 T ^{-1.109}	-819.3 T ^{-1.109}	-816.6 T ^{-1.106}	-835.1 T ^{-1.110}	-834.3 T ^{-1.107}
Axial expansion coefficient (pcm/ °C)	-0.160	-0.170	-0.121	-0.127	-0.109	-0.114
Radial expansion coefficient (pcm/ °C)	-0.707	-0.743	-0.735	-0.771	-0.744	-0.780
Sodium density coefficient (pcm/ °C)	0.692	0.750	0.702	0.761	0.697	0.761
Sodium void worth (\$)	6.68	7.28	6.91	7.52	6.87	7.55

Reactivity effects

□Minor effects on the reactivity with a higher power

Summary & Future Works

Investigate the performances and reactivity coefficients from medium to large TRU burners

- Almost the same TRU burning rate per power
- Little preference at any power level with the same TRU enrichment
- Minor effects on the reactivity with a higher power

□Future works

- Conversion ratio changes of these designed cores
- Safety evaluation of the designed cores
- Overall evaluation of core designs to determine an optimum power level and optimum conversion ratio

Thank you for your attention

