

INTERNATIONAL COMPARISON FOR

TRANSITION SCENARIO CODES

INVOLVING COSI, DESAE, EVOLCODE, FAMILY

AND VISION

Lionel Boucher CEA – France F. Alvarez Velarde, E. Gonzalez CIEMAT - Spain B. W. Dixon INL-USA G. Edwards, G. Dick AECL- Canada K. Ono JAEA-Japan

lionel.boucher@cea.fr

CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 1/21

Outlines

- Introduction and background
- Codes Selected for the benchmark
- Scenario assumptions
- Results
- Conclusions

The WPFC / FCTS

The expert group on Fuel Cycle Transition Scenario (FCTS) is working under the guidance of the Working Party on scientific issues of the Fuel Cycle (WPFC) of the NEA

Objective of the WPFC / FCTS group :

National, regional or worldwide transition scenarios are studied inside this expert group with different existing tools devoted to scenario studies. After a review on existing national scenarios, one of the first missions of this expert group was to compare the existing scenario codes in term of capabilities, modelling and results.

Codes Selected for the benchmark

5 codes were selected, among the available existing codes :
 COSI 6 developed at CEA-France,
 DESAE2.2 developed at ROSATOM-Russia, operated by AECL
 EVOLCODE developed at CIEMAT-Spain,
 FAMILY21 developed by JAEA-Japan
 VISION2.2 developed at INL-USA.
 These codes have different output and capabilities
 ⇒The benchmark will assess the common capabilities

of the codes

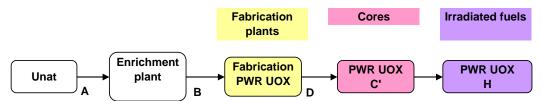
A D KRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 4/21

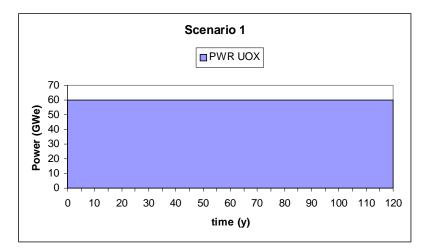
Codes Selected for the benchmark

	COSI 6	DESAE 2.2	EVOLOCODE	FAMILY21	VISION 2.2
Clanguage	Java		Fortran	Microsoft Visual Basic	System Dynamics/ Power Sim
User interface	Yes	Yes	Text interface	Yes	Yes
Simultaneous advanced technologies scenarios	Any combination of LWR, HTR,HWR, FR, ADS + different types of fuels	Yes	Any reactor with any fuel	Any combination of LWR, HWR, FR and ADS + different types of fuels	One-tier, two- tier scenarios (+ choice of the number of recycling)
Isotopics tracking	Y (Isotopes of U/PU/MA/200 FP)	U, Pu, minor actindes	Yes (~3300 isotopes)	Yes (Isotopes of U/Pu/MA/ 880 FP)	Yes (Follows up to 81 isotopes)
Calculation of depletion in cores	sections libraries		Creation of one group cross sections with EVOLCODE2. Possibility of choosing reference libraries.	Stored depletion matrix based on results of depletion calculation by the ORIGEN2 code	Precalculated Fuel recipes with interpolation (as a function of the number of cycles)

CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 5/21

Codes Selected for the benchmark

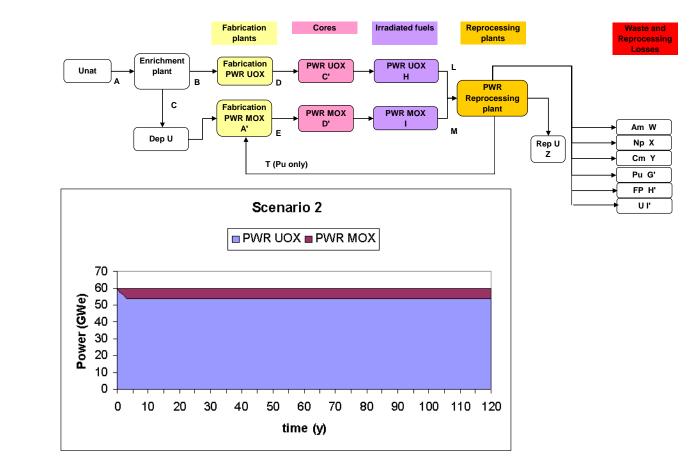

		COSI 6	DESAE 2.2	EVOLOCODE	FAMILY21	VISION 2.2
œ	Start Up and Shut Down fuel loads	Yes	Startup only	Yes	Yes	No
	Front-End fuel cycle facilities	All facilities represented	Enrichment	Enrichment	Enrichment Fabrication	Enrichment Fabrication
	Reprocessing plants	Represented	Represented	Represented	Represented	Represented
-	Spent fuel to be reprocessed	User choice: "first-in first- out" or "last-in- first-out"	"first-in first out" only	User choice: "first-in first- out" or "last-in- first-out"	User choice: "first-in first- out" or "last- in-first-out"	User choice: "first-in first- out" or "last- in-first-out"
	High Level waste package calculations	Yes + time dependant radiotoxicity and decay heat	No	No	Yes	Yes
	Repository requirement assessment	Yes	No	No	No	Yes



CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 6/21

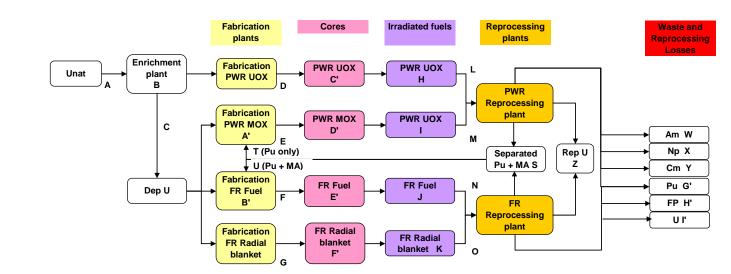
=> 3 scenarios with 3 different levels of complexity

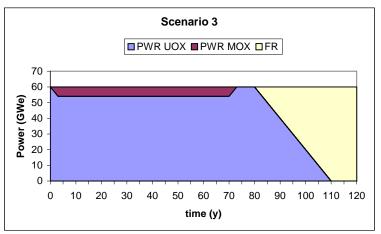
Scenario 1 : open cycle nuclear fleet


- No transition in the reactor park

- Accumulation of spent fuel without reprocessing

CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 7/21


Scenario 2 : single recycling of Pu in the LWR



- No transition in the reactor park
- Reprocessing of PWR UOX spent fuel, MOX is not reprocessed

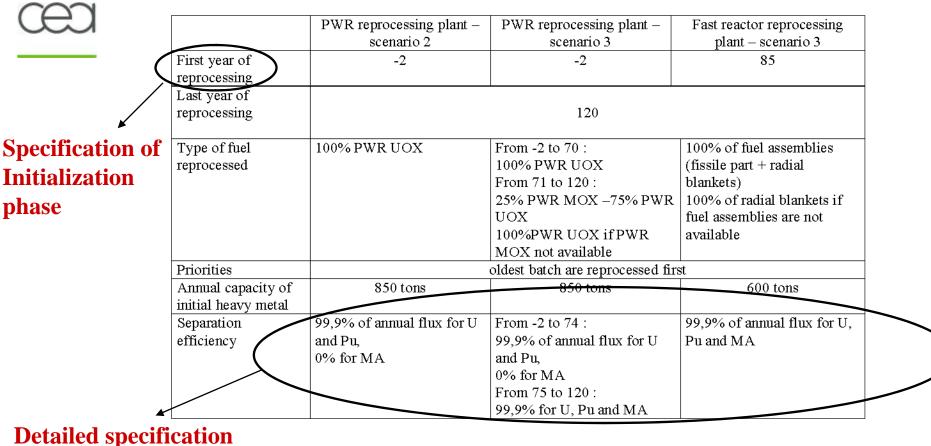
CADXRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 8/21

Scenario 3 : Recycling of Pu and MA in the Fast Reactors

Transition from LWR to fast reactors
Reprocessing of PWR UOX, MOX and FR spent fuel (fissile + blankets),

CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 9/21

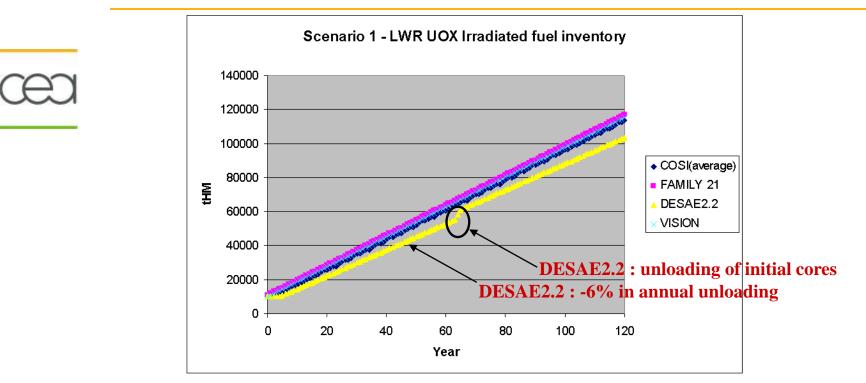
Scenario Assumptions


Reactor and fuel assumptions

			PWR UOX	PWR MOX	FR	
α	Fuels / blankets				\frown	
	Fissile Burnup	GWd/tH M	60	60	136	
	Axial blankets burnup	GWd/tH M	-	-	15	
	Radial blankets burnup	GWd/ tHM	-	-	25	
	Minimum cooling time	у	5	5	2	N
	Fabrication time	у	2	2	2	
	Fresh fuel ²³⁵ U enrichment	%	4,95	0,25	0,25	
	Moderation ratio		2	2		FR cores with 3 zones
	Equivalent Pu content	%	-	-	14,5	
	Cores				K	
	Electrical nominal power	GW	1,5	1,5	1,45	
	Efficiency	%	34	34	40	k I
	Load factor	-	0,8176	0,8176	0,8176	
	Heavy metal masses					
	Fissile	t	128,9	128,9	41,4	Not considered
	Axial blanket	t	-	-	10,0	
	Radial blanket	t	-	-	13,5	by some of the codes
	Breeding gain		-	-	≈1	by bound of the could
	Cycle length	EFPD	410	410	340	
Initialization	Core fraction (fuel)		1/4	1/4	1/5	
	Core fration (radial blankets)		-	-	1/8	
effect —	Reprocessing plants					
	Priorities		First in –first out	First in -first out	First in –first out. First fuel then blankets	
	Losses (U and Pu)	%	0,1	0,1	0,1	
	Initial Spent fuels	<u> </u>				
			- PWR UOX	PWR MOX	FR	
	Initial mass	t	10000	0	0	

CADKRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 10/21

Reprocessing assumptions

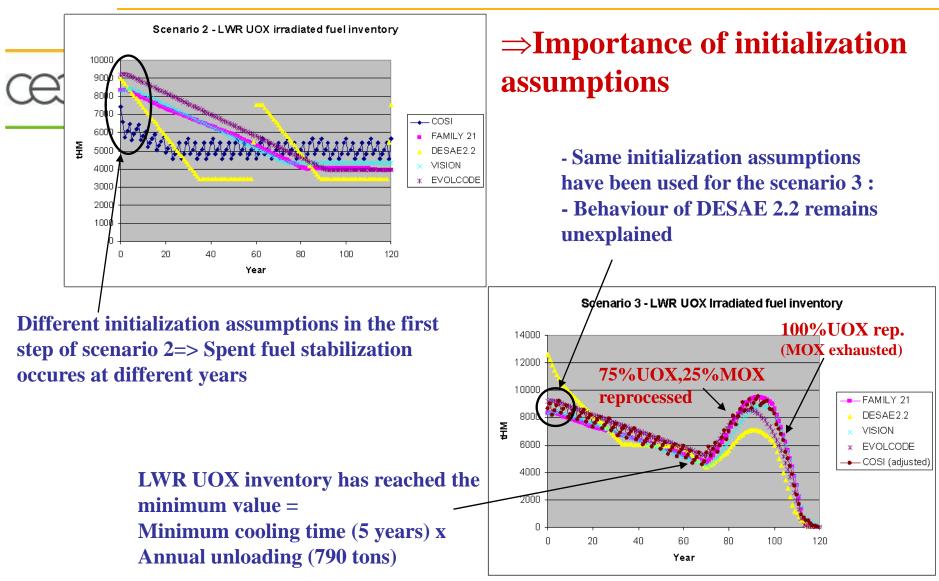


of separation capacity

CADKRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 11/21

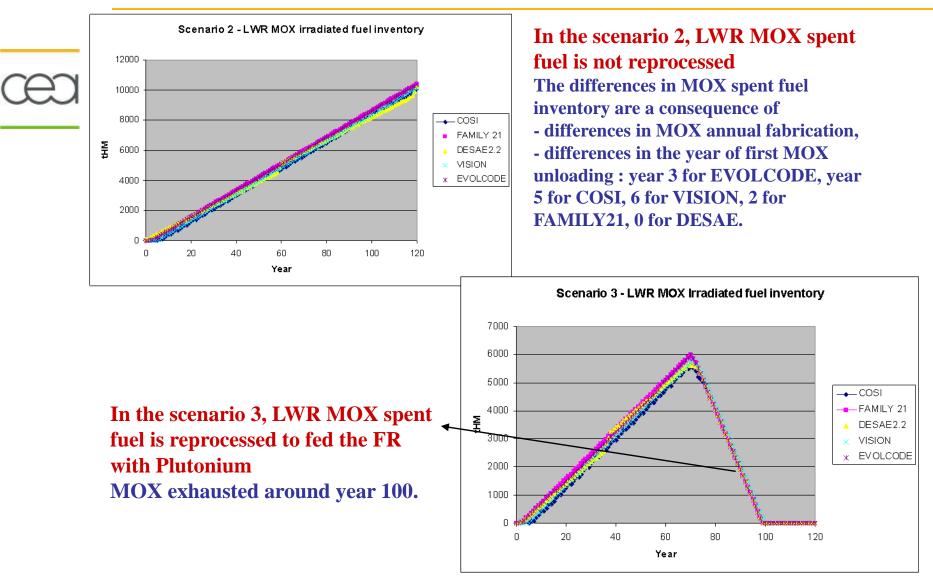
Results : spent fuel

All the codes are very close, except DESAE 2.2 for which the dicrepancies remain unexplained.

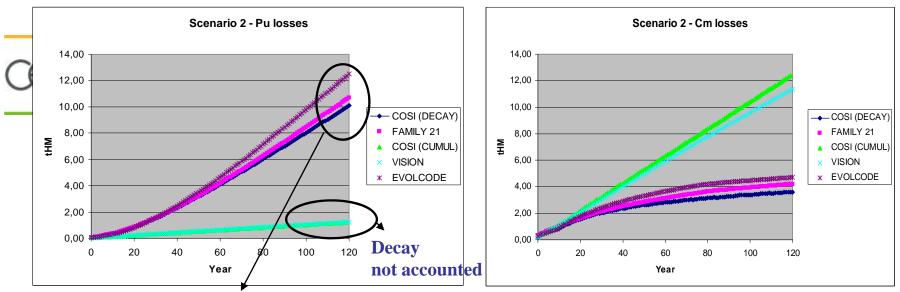

The year of the first unloading of spent fuel has also an impact on the accumulated LWR UOX irradiated fuel. The values given by the codes are:

DESAE 2.2: year 1	COSI: FAMILY 21: VISION: DESAE 2.2:	year 3 year 2 year 1 year 1	=> Importance of initialization phase
-------------------	--	--------------------------------------	---------------------------------------

CADKRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 12/21

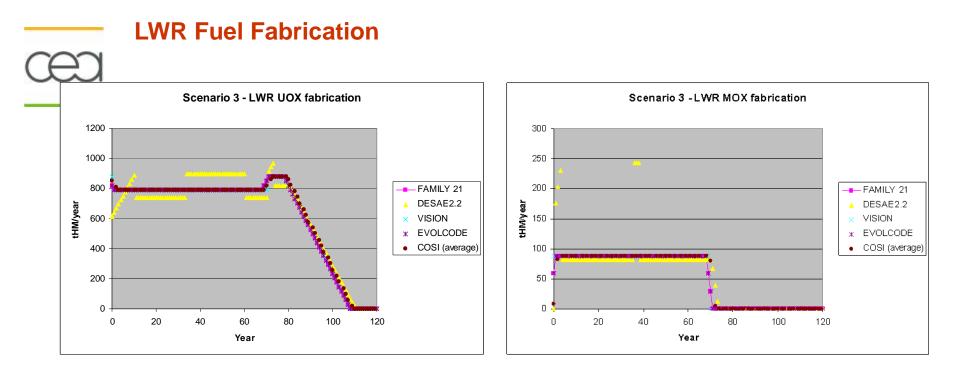

Results : spent fuel

CADXRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 13/21


Results : spent fuel

CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 14/21

Results : Pu and MA losses

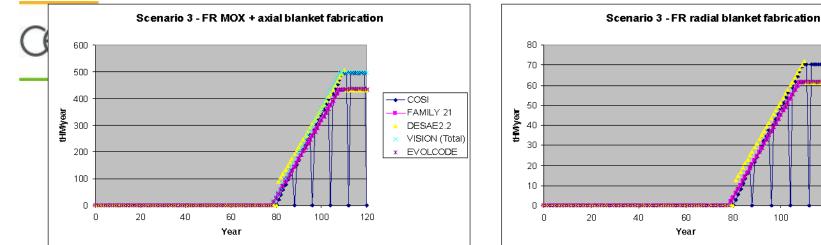

The decay of Cm244 to Pu240 (period = 18 years) is the main contributor of Pu inventory in the HLW...

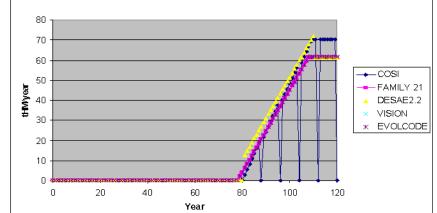
... and tends to stabilize Cm inventory

- 4 factors can explain the discrepancies in MA losses :
- 1.- A different reprocessing amount of spent fuel,
- 2.- The age of spent fuel at reprocessing step
- **3.-** Each code has applied its own neutron spectra and cross sections, leading to slightly different isotopic compositions in the spent fuel.

4.- COSI, EVOLCODE and FAMILY codes account for the decay of nuclear waste after reprocessing, whereas VISION does not consider this decay.

Results

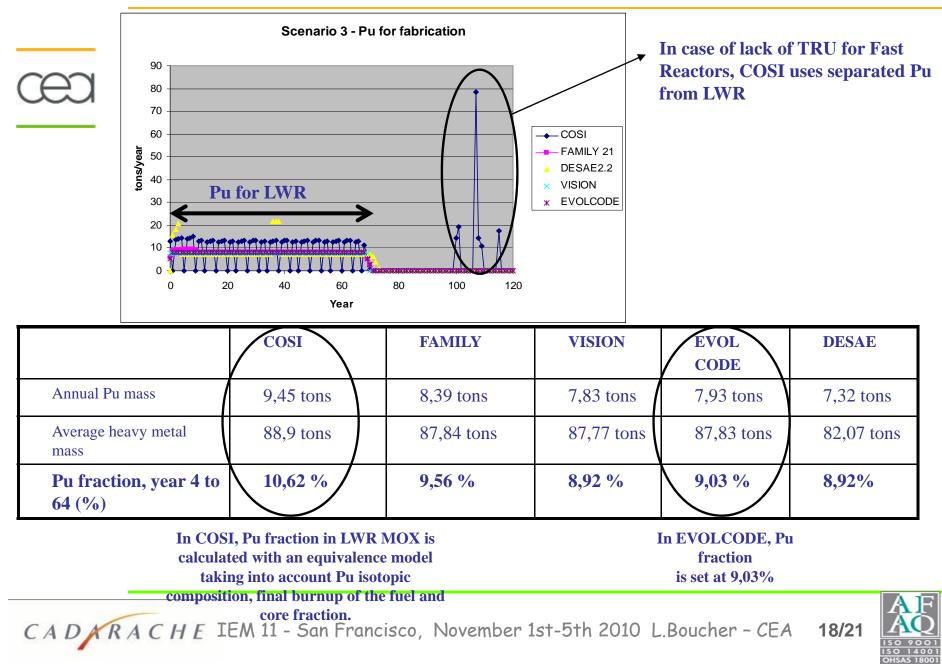

In all the codes, fabrication of fuel depends on demand COSI, FAMILY21, EVOLCODE and VISION calculate the same values for UOX and MOX fuel fabrication. For DESAE2.2, LWR UOX and MOX fabrication is different.



CADARACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 16/21

Results

Fast Reactors Fuel Fabrication


	COSI	FAMILY	VISION	EVOL CODE	DESAE
Annual average MOX + axial blanket fabrication after year 110	435,0 tons	431,8 tons		435,4 tons	431,8 tons
Annual average radial blanket fabrication after year 110	61,8 tons	61,3 tons		61,8 tons	61,3 tons
Total	496,8 tons	493,1 tons	497,4 tons	497,2 tons	493,1 tons

 \Rightarrow Discrepancies in the transition phase (from year 80 to 110) \Rightarrow Agreement in the equilibrium phase (after year 110)

CADXRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 17/21

Results : Pu for fabrication

The results and the analysis of the calculations lead to the following conclusions:

1) The general trends observed for each code are the same for the 3 scenarios calculated in the benchmark.

2) All the scenario codes give very close results for the scenario 1. However, there is neither transition nor reprocessing in this scenario.

3) For the scenario 2 and 3, the general trends are the same but some discrepancies appear. The comparison of the results demonstrates the importance of initial assumptions and the common interpretation of the assumptions and results.

4) A tuning of the assumptions is often necessary because of the difference of interpretation for initial conditions and some missing assumptions which may appear. Thus, several iterations can be necessary to converge.

ADXRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 19/21

Conclusions (2/3)

5) Once the tunings and iterations has been made, some remaining discrepancies subsist and come mainly from
the capacity of modeling of the codes,
the transition periods in the scenarios 2 and 3,
the differences in physical models : irradiation and decay calculations
the flexibility offered by the different codes.

This benchmark was limited to the comparison in heavy elements material flows. A comparison for isotopes would have probably led to other discrepancies and would have necessitated a more detailed investigations on the physical models used by the codes.

Conclusions (3/3)

2 documented benchmark on scenario codes

œ

NEA benchmark : COSI, DESAE, EVOLCODE, FAMILY, VISION

"NEA/NSC/WPFC, Expert group on fuel cycle transitions scenarios, Benchmark on Scenario codes" L. Boucher (CEA) with the contributions from F. Alvarez Velarde, E. Gonzalez (CIEMAT) B. W. Dixon (INL) G. Edwards, G. Dick (AECL) K. Ono (JAEA)

Publication scheduled in 2011

MIT benchmark : CAFCA, COSI, DANESS, VISION

"A Benchmark Study of Computer Codes for System Analysis of the Nuclear Fuel Cycle » MIT-NFC-TR-105 – April 2009

Massachusetts Institute of Technology : Laurent Guérin **Bo Feng Pavel Hejzlar Benoit Forget** Mujid S. Kazimi **Argonne National Laboratory :** Luc Van Den Durpel **Idaho National Laboratory :** Brent W. Dixon **Grechen Matthern Commissariat a l'Énergie Atomique : Lionel Boucher Marc Delpech Richard Girieud Maryan Meyer**

DKRACHE IEM 11 - San Francisco, November 1st-5th 2010 L.Boucher - CEA 21/21