THE ENVIRONMENTAL IMPACTS OF KOREAN ADVANCED NUCLEAR FUEL CYCLE KIEP-21 AND DISPOSAL CONCEPTS

Jihae Yoon and Joonhong Ahn

Department of Nuclear Engineering University of California, Berkeley

November 3, 2010

Contents

1. KIEP-21 : Waste streams and Repository concept

2. Radionuclides Transport Model

3. Environmental Performance Analysis Results

4. Conclusions

KIEP-21 : Waste streams and Repository Concept

Flowsheet for treatment of 1 MTHM of used PWR fuel with 4.5wt% U-235, 45000 MWD/MTU, and five provisional waste streams.

Repository concepts

Korean Reference Spent Fuel Disposal System (KRS)

Advanced Korean Reference Disposal System (A-KRS)

Before pyro-process, PWR spent fuels will be stored at the level of 200 m depth

KAERI, High-Level Waste Long-term Management Technology Development (2010) Waste 1 : Tunnel(or Silo) disposal at EL -200 m Waste 2 3 : Storage for 100 yrs at EL - 500 and then final disposal (Closure) Waste 4 5 : Storage for 300 yrs at EL -200 m and then final disposal (Closure)

Before pyro-process, PWR spent fuels will be stored at EL -200 m depth

Waste 2 3 will be stored at EL-200 level for 100 yrs, and then Transported to El -500m and disposed finally (vertical emplacement : KBS-3 type)
Waste 3 will be stored at EL-200 level for 300 yrs, after then disposed finally
Waste 1: Tunnel(or Silo) disposal at EL -200 m

Waste Package/Disposal

Waste Package/Disposal

Volume/Heat Emission

Pyroprocessing	
waste stream	Volume (unit: m³/1 MT)
Waste 1	0.14
Waste 3	0.14
Waste 4	0.08
Waste 5	0.01
Total	0.37
Direct Disposal	3.06

 \rightarrow 1/8 volume reduction

Heat emission

Concept	Heat emission (unit: watts/ton)
Pyroprocessing	2.00E+00
Direct Disposal	1.34E+02

(after 300 yrs)

Repository

Geochemical modeling scheme

* Neglect canister and overpack * PHREEQC (V.2.17) code

Environmental Performance Analysis

Comparative and Parametric studies

- Effects of Back-end Fuel Cycle
 - : Direct disposal (KRS) and Pyroprocessing (A-KRS)
- Waste Form Durability Effect
- Solubility Effect

A. Effects of Back-end Fuel Cycle

: Direct disposal (KRS) and Pyroprocessing (A-KRS)

Time after package failure, year

Time after package failure, year

B. Waste Form Durability Effect

- From $T_L = 4,000$ year to $T_L = 4$ million year at 10 m location
- Direct disposal case ($T_L = 4$ million year)

Time, year

Time, year

Releasre Rate (mol/year) Mass

Discussions (1)

- Because most TRU isotopes are recovered by pyroprocessing for future use in the fast reactors, the heat emission from the waste is reduced by a factor of 67 at 300 years, compared with emission from PWR spent fuels.
 - Major heat emitters in the first 300 years, Cs and Sr, are included in the intermediate level wastes, and is assumed to be managed by active ventilation.

Discussions (2)

- In the near field, the peak radionuclide release rate is reduced by application of pyroprocessing.
 - This is not because of separation of TRUs from the PWR used fuels, but because of better performance of waste forms than the spent fuel, which contains lodine-129 in the gap between fuel pellets and cladding.
 - Contributions of TRU elements are not significant.
- \Box In the far field,
 - Those fission products that dominate the release rate in the near field also are main contributors.
 - Furthermore, difference in TRU inventories and waste form performance do not make significant difference, due to assumed mechanism of radionuclide retention and dispersal in the far field.
 - **D** This needs further study to confirm.

Conclusion

- From the preliminary parametric study, it has been confirmed that waste-form durability and radionuclide solubility can have significant effects. For more meaningful comparison, we need to make a realistic assessment of repository performance, for which we need to achieve:
 - More detailed heat transfer analysis to determine repository configurations
 - More detailed geochemical analysis to determine waste-form dissolution, release of radionuclides from waste forms, and transport of radionuclides in the engineered barrier

Acknowledgement

- Grant from Korea Atomic Energy Research Institute (KAERI).
- Dr. Eung Ho Kim (KAERI)
- Dr. Yongsoo Hwang (KAERI)
- Dr. Jong Tae Jeong (KAERI)

Thank you for your attention!