

Minor-Actinides transmutation in an Accelerator Driven FRAMEWOR System prototype: results from fuel developments within the European integrated program EUROTRANS.

<u>F. Delage,</u> R. Belin, J.P. Ottaviani (CEA) X.-N. Chen, W. Maschek, A. Rineiski (KIT) E. D'Agata, A. Fernandez, J. Somers, D. Staicu (JRC) F. Klaassen, S. Knol (NRG) V. Sobolev (SCK• CEN) R. Thetford (Serco for UK-NNL) J. Wallenius (KTH) B. Wernli (PSI)

OUTLINES:

Objectives & background Items addressed In-pile tests results Major outcomes

Objectives & background for fuel developments

• Objectives of domain AFTRA:

U-free fuel, Pb coolant) according to in-pile behaviour, out-of-pile properties, predicted behaviour

in normal operating conditions and safety performance

Recommendations for the most promising fuel

- Fuel candidates:
 - Emphasis in Europe on oxide-based fuels
 - reference: CERCER (Pu, MA)O₂ + MgO and CERMET (Pu, MA)O₂ + ^{enr}Mo
 - solid-solution (Pu,MA,Zr)O₂ as an alternative
 - First development in the frame of the FP5 FUTURE program: best candidates according to performance, safety and fabricability criteria + synthesis of oxide compounds + out-of-pile characterisation
 - Strong synergy with transmutation target programs (ex: ECRIX-H)
 - Large industrial experience on oxide fuel fabrication for critical reactors
 - Nitride-based fuels (Pu,MA,Zr)N as a backup
 - Development by JAEA (EUROTRANS partner): JAEA ADS fuel compo. ~Pu_{0.2}Am_{0.3}Zr_{0.5}N
 - Development in the frame of the FP5 CONFIRM program: (Am,Zr)N synthesis, irradiation of (Pu,Zr)N pellets in HFR, out-of-pile measurements

Items addressed within AFTRA

- CERCER & CERMET fuel element design and performance assessment:
 - Pu/MA ratio, IM content, size & configurations of pellets, pins and SAs
 - Neutronic and thermo-mechanical behaviour from BOL to EOL
- Safety Analysis:
 - transients conditions: ULOF, UTOP, ...
 - severe accidents
- In-pile experiments:
 - PIE on one pin of ADS fuel precursor (Pu_{0.3}Zr_{0.7}N), irradiated in HFR (480W.cm⁻¹, 10.4at%) within CONFIRM program
 - FUTURIX-FTA test in PHENIX
 - HELIOS test in HFR
 - BODEX test in HFR and Post Irradiation Examinations
- Out of pile experiments:
 - Thermal and mechanical properties of CERMET, CERCER fuels
 - Chemical compatibility : fuel/clad, fuel/coolant, TRU compounds/Inert Matrices
 - Oxygen potential
 - Pu-Am-O phase diagram

Futurix-FTA experiment

Comparison of irradiation behaviour in EFIT representative conditions for 3 fuel types :

oxides (european development), nitrides (JAEA development), metallic fuels (US development) Collaboration DOE-JAEA-ITU-CEA

• Investigation on MgO-CERCER and Mo-CERMET fuels under EUROTRANS umbrella

Pin nb	composition	Am (g/cm3)	TRU (g/cm3)
5	Pu _{0.8} Am _{0.2} O _{2-x} + 86%vol Mo	0.3	1.3
6	Pu _{0.23} Am _{0.25} Zr _{0.52} O _{2-x} + 60%vol Mo	1.0	1.8
7	Pu _{0.5} Am _{0.5} O _{2-x} + 80%vol MgO	1.0	2.0
8	Pu _{0.2} Am _{0.8} O _{2-x} + 75%vol MgO	1.9	2.5

Test successfully completed in March 2009 after 235 EFPD

- CERMET fuel capsule:
 - Pin 5: LHR ~130W/cm & BU~18at%
 - Pin 6: LHR~130W/cm & BU~13at%
- CERCER fuel capsule:
 - Pin 7: LHR~100W/cm & BU~9at%
 - Pin 8: LHR~90W/cm & BU~6at%

PIE scheduled in FP-7 FAIRFUELS project

11-IEMPT, San Francisco, Nov. 1-5 2010

- Role of microstructure and T° on fuel swelling as well as helium build-up & release:
 - Pin 1: Am pyrochlore particles (~5-50µm) dispersed in MgO matrix with tailored open porosity
 - Pins 2&3 (T° instrumented): AmO₂ in Yttrium stabilised ZrO₂ crystal lattice w/o Pu
 - Pins 4&5: beads (>65µm) embedded in Mo w/o Pu

Pin nb	composition	µ-structure	Am (g/cm3)	Pu (g/cm3)	Max. T° (°C) estimation
1	Am ₂ Zr ₂ O ₇ + 80 vol%MgO	CERCER	0.7	/	650
2	Zr _{0.80} Y _{0.13} Am _{0.07} O _{2-x}	Solid-			620
3	Pu _{0.04} Am _{0.07} Zr _{0.76} Y _{0.13} O _{2-x}	solution		0.39	1390
4	Am _{0.22} Zr _{0.67} Y _{0.11} O _{2-x} + 71 vol%Mo	CERMET		/	620
5	Pu _{0.80} Am _{0.20} O _{2-x} + 84 vol%Mo	CERMET		1.2	1120

Irradiation test successfully completed on Feb. 19, 2010 after ~241 EFPD

& internal temperatures measured in pins 2&3 lower (~100°C) than expected

S PIE under progress within FP-7 FAIRFUELS project

CERCER and CERMET pellets fabrication

• Steps: particle synthesis by 2 routes and then conventional powder metallurgy

11-IEMPT, San Francisco, Nov. 1-5 2010

BODEX experiment (1/5)

- Investigation of He build-up and release mechanisms in Inert Matrices
 - ¹⁰B surrogate of ²⁴¹Am to simulate He production: ${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{7}_{3}Li + {}^{4}_{2}\alpha$
 - Advantages: few wt% of ¹⁰B sufficient to be representative of He production, short irradiation time,

easy fabrication and handling.

- Design: ✓2 T° : 800 - ~1200°C \checkmark 3 matrices : Mo, MgO, ZrO₂ ✓ 1 wt% B ✓ 3 boron compounds : Mo_2B / Mo $ZrB_2 / Y-ZrO_2$ $Mg_3B_2O_6 / MgO$ density >90% density> 90% density: <u>76-82%</u> \checkmark 2x3 capsules : 3 pellets doped with ¹⁰B + 1 pellet doped with ¹¹B + 1 undoped pellet $10\mathbf{B}$ $10\mathbf{R}$ $^{11}\mathbf{B}$ $10\mathbf{R}$ $^{0}\mathbf{B}$ ✓ 2 legs & on-line pressure measurements / 2 capsules Pressure transducers YSZ MgO Mo hot leg Thermocouples Mo MgO YSZ cold leg shroud capsule containment
- HFR irradiation conditions: 57 EFPD ¹⁰B burn-up: ~65% He production: ~6x10²⁰atoms/cm³

BODEX experiment (2/5)

BODEX experiment (3/5)

11-IEMPT, San Francisco, Nov. 1-5 2010

BODEX experiment (4/5)

BODEX experiment (5/5)

• Summary:

¹⁰ B- doped	Average	Open Porosity (%)		He release	Visual	
samples	swelling (%)	BOI	EOI	(%)	inspection	
Mo-800°C	2	2.4	2.3	N/A	cracks	
Mo-1200°C	9	2.5	4.6	9		
MgO-800°C	8	21.3	27.1	32		
MgO-1200°C	3	22.7	24.7	35	fragile	
YSZ-800°C	1.2	4.0	7.6	N/A		
YSZ-1200°C	4.1	3.5	5.1	27		

• Conclusion:

Molybdenum (high density): low helium release – significant swelling at 1200°C -

very good performance at 800°C

MgO (high porosity): large He release – significant swelling at 800°C –

possible extra-sintering at 1200°C

- YSZ (high density): large He release - low swelling at both temperatures

Swelling ranges are manageable in all cases

Major Outcomes on CERCER and CERMET fuels (1/2)

- Fabrication of Am bearing fuels: demonstrated at laboratory scale with
 - Am content up to 36 wt% (1.9 g/cm³)
 - TRU-oxide fraction up to 40 vol%
- Fuel behaviour under irradiation:
 - first irradiation tests completed on ADS type fuels: FUTURIX-FTA & HELIOS
 - results gained in BODEX: swelling of Mo & MgO manageable
- Physical-chemical properties:
 - accurate data on thermal properties: heat capacity, thermal diffusivity, oxygen potential and high T° species
 - first results on mechanical properties for (Pu,Am)O₂: creep rate
 - chemical compatibility (normal operation T° conditions and short time) for
 - MgO and Mo / PuO_2 and $Pu_{0.5}Am_{0.5}O_2$
 - Pb / TRU-oxides, MgO and Mo
 - T91 / Pu_{0.8}Am_{0.2}O_{2-x}, T91/Mo and T91/MgO, T91 / CERMET samples
 - phase diagram investigation: Am drives the crystallographic structures of (Pu,Am)O_{2-y}
 - Am rich systems: hexagonal Am₂O₃ type structure
 - Pu rich systems: strong modifications with Am increase from fcc PuO_2 to bcc Am_2O_3 structures

Major Outcomes on CERCER and CERMET fuels (2/2)

- Neutronic & transmutation performances under normal operation conditions:
 - fuel element configurations found to meet EFIT core specifications given by designers
 - similar performances with MgO-CERCER and ^{enr}Mo-CERMET fuels
- Thermo-mechanical performances under normal operation conditions:
 - description of fission gas behaviour in heterogeneous media improved in models
 - good behaviour calculated (MACROS, TRAFIC) of both fuels

- Safety analysis:

- sufficient safety margins for MgO-CERCER fuel
- larger margins for Mo-CERMET fuel
- T91 clad failure limits pose main restriction on safety (and design)

Reinforced interest for both ^{enr}Mo-CERMET and MgO-CERCER for EFIT

Ranking between the 2 primary candidates seems premature without at least results of FUTURIX-FTA & HELIOS PIE scheduled in FP7-FAIRFUELS program (2009-2013)

Thank you for your attention

. . .

