

energie atomique - energies alternative

<u>A</u>talante <u>L</u>aboratory <u>F</u>or <u>A</u>ctinides bearing fuel manufacturing

11IEMPT SAN FRANSISCO NOVEMBER 1st 5th

CONTENT

1.Context

- 2. Atalante facility
- 3. Main goals for the project
- 4. Fuel fabrication targets
- **5. Fabrication process**
- 6. Required shielded lines
- 7. Progress of design studies 8. Global roadmap

1.CONTEXT OF THE PROJECT

• The 1991 and 2006 french acts: frame of the program

- Three Research thematics for nuclear waste management:
 - partitioning and transmutation of MA
 - geological deep repository
 - confinement and interim storage

December 30, 1991 and June 28, 2006

- <u>A "roadmap":</u>
 - <u>2012</u> : industrial potentialities of the diverse Partitioning and MA transmutation options,
 - <u>2015</u> : repository defined, and operation by <u>2025</u>

2. ATALANTE FACILITY PRESENTATION

3. MAIN GOALS

- Flexible fabrication capacity / short production time (a few months)
- prefigure the (pre) industrial scale (process, production capacity...)
- A demonstration for *innovative* processes and technologies

4- FUEL FABRICATION TARGETS

11IEMPT

5. FABRICATION PROCESS

- The selection of the appropriated process must take into account:
 - MA specific constraints (high activity/ thermal effects/ radiolysis...)
 - Suitable technology regarding exploitation and maintenance for hot cell operation
 - Industrial extrapolation
 - Various products (according to reactors specifications)
 - management of waste and by-product

ALFA is tightly linked to two main R&D programs:

- 1. R&D for process qualification
- 2. R&D for technological development :
 - Process equipements adaptation for hot cell environment
 - Innovative hot cells architectures

• On going R&D programs main goals:

- demonstrate the MA's fuel fabrication process control at laboratory scale:
 - Heterogeneous fuel (high Ma's concentration)
 - Fuel specifications achievement
 - determine the critical paths in the process
 - identify and evaluate alternative routes to assess the advantages in term of process simplifications (co-converted powder)
 - develop and test innovative technologies
 - evaluate the extrapolation at pilot and industrial scale

5. FABRICATION PROCESS

Conversion: different routes already under developement (ATALANTE Radiochemistry and processes department):

S.Picart et al

Oxalic co-precipitation + thermal treatment

- Co-immobilisation in ion exchange resins
- With significant achievements for MA

- Sol-Gel + Thermal Treatment (european program)
- Thermal denitration

Fabrication: different routes under evaluation (short to long term):

- Standard Powder metallurgy
- Significant achievements for experimental irradiations

	6		
	100		
		-	

- Function of powder and spheres caracteristics
- Spherepac

 Process adaptation during facility lifetime

6.REQUIRED SHIELDED LINES FOR ALFA

7. PROGRESS OF DESIGN STUDIES

The first design: a fabrication line based on well known PWR/SFR MOX fabrication process

- Including some innovations still under evaluation
 - Shuttle for rapid reconfiguration and maintenance of critical equipment
 - Automatic remote handling / robots

7. PROGRESS OF DESIGN STUDIES

- Implementation studies in existing laboratories for the chemical process:
 - a 19m long shielded line and a 10 glove boxes lab.

- Design studies of the new building devoted to fabrication process:
 - 41m x 30.7m x 13.7m(H) 21 000m3
 - 4 levels
 - 11 shielded cells / 40m long / 270 m3
 - Up to date safety requirements
 - Connected to the existing ATALANTE design facility

7. PROGRESS OF DESIGN STUDIES

• To continue the studies in order to:

nergie atomique • energies alternatives

- Consolidate the design:
 - Innovations, safety requirements...

Assess the impact of different processes on the design

• Otpimize the investment cost

8- GLOBAL ROADMAP FOR LONG TERM INVESTMENT PLAN

9. CONCLUSION

- ALFA project calls for the construction of an experimental high activity fuel fabrication facility at a significant scale : ASTRID prototype.
 - ALFA will be able to produce various MA bearing fuel and blanket types.
 - This new fabrication line will be opened to international collaboration.

energie atomique - energies alternative

11IEMPT SAN FRANSISCO NOVEMBER 1st 5th