Nuclear Energy

Fuel Cycle Research and Development

ADVANCED HEAD END FOR THE TREATMENT OF USED LWR FUEL

G. D. DelCul

R. D Hunt, J. A. Johnson, B. B. Spencer, R. T Jubin, and E. D. Collins

OECD Nuclear Energy Agency

11th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation

Hyatt at Fisherman's Wharf, San Francisco, California, 1-5 November 2010

U.S. DEPARTMENT OF ENERGY

Standard Voloxidation

Nuclear Energy

- The voloxidation process was developed as a dry head-end method for removing tritium from segmented used fuel by oxidation of the UO₂ matrix into a fine U₃O₂ powder that can be easily separated from the cladding
 - The voloxidation process takes place at 480°C to 600°C in the presence of air or oxygen.
 - Conversion to the higher oxide results in expansion and restructuring of the grain-level crystallite accompanied by crumbling of the monolithic fuel pellet to a fine powder.
 - Tritium, which may be present in the fuel in elemental form, diffuses to the surface of the particle where it reacts with oxygen to form water which enters the gas stream
 - A fraction of the tritium is associated with the cladding as zirconium hydride (ZrTx)

Kilogram-scale tests done with actual commercial LWR spent fuel ranging from low burnup and long cooling time to very high burnup and short cooling time indicated recoveries over 99%. Acid washing of the hulls extended the recovery to 99.9%

NO₂ Voloxidation

- A mixture of NO₂ and O₂ is used as an oxidant

 - UO₂ pellets treated with NO_{2 (g)} readily transform into a fine brown powder 3 UO_2 + 2 $NO_{2(g)} \rightarrow U_3O_8$ + 2 $NO_{(g)}$ t= significantly lower than for O_2 or air
 - Faster than air or oxygen oxidation at t>500 °C
 - Higher temperatures do not improve kinetics of NO₂ oxidation
 - Oxidation with the same mixture during cooling readily and completely converts the oxide powder into reddish-brown UO₃
 - The generated ${\rm UO_3}$ products will dissolve in just a few minutes using warm HNO $_3$ at a concentration of 0.25M or higher
- The UO₃ powder produced treated with pure NO2 (N2O4) gas or liquid at near room temperature produce metal nitrates, e.g.,
 - $UO_3 + 5 NO_2(g) \rightarrow UO_2 (NO_3)_3 NO + NO(g)$
 - Uranyl nitrosyl nitrate (UO₂ (NO₃)₃ NO) is yellow-green in color

NO₂ Delivery System

Some Properties of NO₂

- Dinitrogen tetroxide is a clear liquid (blue tint)
 - Boiling point 21.1 °C
 - Melting point -9.3 °C
- N₂O₄ (Clear blue, diamagnetic) ↔ 2 NO₂ (Brown, paramagnetic)
 - Readily dissociates to NO₂
 - 16% dissociated at 21.1°C, 50% at 40 °C, and 99% at 135 °C
- NO₂ is an strong oxidizer more reactive than O₂

Some Properties of NO₂ and related species

- NO2 readily react with O₃ to form N₂O₅ and possibly NO₃ as an intermediate species
 - At room temperature and in the pure form, N₂O₅ is a colorless solid with a very high vapor pressure. It is also a very strong oxidizing agent
 - Using a mixture of NO_2 (N_2O_4) and O_3/O_2 produced with a commercial ozone generator. showed to improve the kinetics of the voloxidation process
 - $NO_{2 (g)} + O_{3 (g)} \rightarrow NO_{3 (g)} + O_{2 (g)}$
 - 2 $N_2O_4_{(g)} + O_3_{(g)} \rightarrow N_2O_5_{(g)}(g) + O_2_{(g)}$
 - The tests showed that the oxidation of pellets into a fine red UO₃ powder was faster than with NO₂ alone
 - This finding represents a significant potential improvement, because voloxidation with NO₂ alone is considerably faster than the reactions in air or oxygen at much lower temperatures
- Stainless steel and nickel are compatible with NO₂, O₃ and N₂O₅
 - Copper based alloys including Monel are not
 - Also compatible are fluorinated polymers, such as Teflon; elastomers, such as Kalrez; glass; and quartz.

Quartz rotary reactor vessel showing two pellets of UO₂

Rotary Furnace, Quartz Container and uranium oxide powder

Room temperature nitration of U₃O₈ or UO₃ powders readily produces a yellow powder determine to be Uranyl Nitrosyl nitrate

- $UO_3 + 5NO_2 \rightarrow UO_2 (NO_3)_3 NO + NO(g)$
- Gaseous or liquid NO₂ (N₂O₄) effective

NO₂ Voloxidation

Nuclear Energy

- The NO_(g) byproduct readily reacts with O₂ during cooling to regenerate NO₂
 - 2 NO $_{(g)}$ + O_{2 (g)} \rightarrow 2 NO_{2 (g)}
 - Overall the process can be autocatalytic with gaseous NO₂ being recycled while O₂ is consumed

Sketch of closed-loop NO2 voloxidation

Iodine Removal by NO₂ Voloxidation

- Preliminary tests were conducted flowing NO₂
 - Over Csl powder
 - On first contact of CsI with NO₂ the solid surface becomes black
 - Over a finely dispersed mix of CsI (5%) and U_3O_8 powder, obtained by voloxidation of UO_2 pellets
 - Two main deposits were collected.
 - shiny-gray needles that decomposed over time to a black deposit.
 - Most probably unstable nitrosyl iodide INO that decomposes to NO and I₂
 - typical small dark crystals associated with elemental iodine
- To quantify the residual iodine, a test was conducted using a 1 g sample of U₃O₈ that was impregnated with a solution containing 10 mg of normal CsI spiked with 27 μCi of ¹²⁵I
 - The sample was counted at 35keV before and after treatment. The sample was contained in a small alumina boat and treated with a gas mixture of NO₂/O₃ for 2 h producing bright red UO₃
 - The activity of the post treatment sample at 35 kEV was 5.7% of the original
 - A second treatment was conducted using a small rotary calciner for an additional 2h.
 - The residual activity was 1.2% of the original

Iodine Removal by NO₂ Voloxidation

Nuclear Energy

lodine, which is mostly present in the spent fuel as CsI, is released as I_2 vapor $CsI+ x NO_2(g) \rightarrow CsO_x + NO(g) + 0.5 I_2(g)$ (x=0.5, 1 or 2)

Impacts of the proposed concept on simplification of processing fuel and reduction of costs

Nuclear Energy

Our novel integrated process

- Results in the dry removal of tritium and iodine at a relatively low temperature
- Simplifies the off-gas trapping system
- Produces a fine powder amenable to several separation schemes
 - Can be integrated with other processes
 - Aqueous
 - Electrochemical
 - Dupic like processes
 - Halide volatility
 - Supercritical CO₂ dissolution
 - Alkaline separative schemes
- Depending of the conditions the powder consists of UO₃ and oxides, or UO₂NO(NO₃)₃ and nitrates
- Oxide and nitrate forms can be easily dissolved and enable design and use of continuous powder dissolver

Work in Progress

- Kinetic studies and modeling of the NO₂-voloxidation and nitration processes
 - Build macro-TGA to evaluate kinetics of nitration reactions using unirradiated surrogate fuels.
 - Measure reaction rates of nitration at previously determined favorable conditions.
- Demonstration of the process on one or a few pellets of authentic commercial LWR spent fuel
 - Build small rotary calciner capable of processing used fuel at the one or two pellet scale in a hot cell
 - Demonstrate nitration process on authentic used fuel pellet and initiate analysis of solid and gaseous products

Summary

- A novel dry head-end process is being developed
- The main goals are the separation of cladding from fuel and the upfront removal of problematic fission products while facilitating the downstream processing
- Cold tests using surrogate pellets and tests on a scale of tens of milligrams using actual used fuel are very promising
 - The initial tests showed that the process can be performed at significantly lower temperatures than those for standard voloxidation by using a mixture of NO₂/O₂ or NO₂/O₃ to produce a fine red powder of UO₃ and to release all the tritium and iodine.
 - This powder—containing the uranium as UO₃, transuranium actinides, and nonvolatile fission product oxides—is readily soluble in dilute acids
 - Alternatively, the tests showed that the UO₃ powder can be contacted with NO₂ (N₂O₄)
 gas or liquid at room temperature to produce metal nitrates