

REACTION CROSS SECTIONS, FISSION YIELDS AND PROMPT-NEUTRON EMISSION FROM ACTINIDE TARGETS

F.-J. Hambsch, S. Oberstedt, A. Al-Adili, P. Schillebeeckx, S. Kopecky, C. Sage, C. Lampoudis,

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

Institute for Reference Materials and Measurements

http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

<nr>>

- Introduction
- Neutron induced fission reaction (²³⁴U)
- Neutron emission in fission of ²⁵²Cf(SF)
- Prompt fission neutron spectrum of ²³⁵U(n_{th},f)
- ²⁴¹Am transmission and capture cross sections
- Conclusions

Joint Research Centres

JRC

EUROPEAN COMMISSION

Introduction

<nr.>

Mono-energetic neutron source (MONNET)

- 7 MV Van-de-Graaff accelerator
 - ⁷LiF(p,n)⁷Be, TiT(p,n)³He, D₂(d,n)³He, TiT(d,n)⁴He
 - DC ($I_{p,d}$ < 50 μ A), pulsed beam available
 - 4 + 1 non-T beam line
- $\Phi_{\rm n} < 10^9 \, / {\rm s/sr}$
- NEPTUNE isomer spectrometer
- ionisation chambers, NE213 neutron/gamma-ray detectors, BF₃ counters, HPGe detectors
- Bonner spheres
- fast rabbit systems (T_{1/2} > 1s) for activation studies

GELINA neutron TOF spectrometer

- 70 140 MeV electron accelerator
- repetition frequency: 40 800 Hz
- neutron pulse: 2 μs 1 ns @ FWHM
- $\Phi_n = 3.4 \ 10^{13}/s @ 800 \ Hz$
- 12 different flight paths with a length between 8 and 400 m
- ionisation chambers, C₆D₆ detectors
- high-resolution γ-ray detectors
- fission chambers for flux monitoring

The OECD nuclear data network

<nr.>

Measurement needs derived from applications

<nr.>

Three sources **High priority Bilateral** request list for collaborations in nuclear data which the external (OECD-NEA, partner/stakeholder working party on expresses the need nuclear data evaluation WP' **Competitive projects** (DG-RTD, EMRP) or Coordinated **Research Projects** (IAEA)

Required Nuclear Data Accuracy for Fission Energy Applications

Reactor design parameters and uncertainties

	A priori uncertainty (1 σ) associated to calculations of classical SFRs (SPX) Using unadjusted JEFF-3.1 data	Targeted uncertainty (1 σ) for innovative FR calc., "performance" phase	
k _{eff} (BOC)	1600 pcm	300 pcm	
Power max core BOC	3%	2%	
Power local (away from singularities)	5%	3%	
Internal BG	± 0.06	± 0.02	
EOC nuclide inventory, heavy nuclides and FPs	5% for major U & Pu isotopes 10-20% for other actinides	2% for major U & Pu isotopes 10% for other actinides	
Control rod antireactivity	16% (single rod) 5% (bank)	10% (single rod) 2% (bank)	
Coolant void	16% for both central and leakage components	7% for both central and leakage components	
Doppler effect	10%	7%	

Source: R. Jacqmin Uncertainties in reactor parameters due to nuclear data uncertainties

Similar lists for all Generation-IV systems were obtained by Subgroup-26 of the OECD-NEA working party on evaluation cooperation (WPEC)

Required Nuclear Data Accuracy for Fission Energy Applications

 Typical uncertainties to be achieved in nuclear data to meet the requested performance (from SG26, very partial list)

	Energy interval	Current uncertainties	Required uncertainties
U-238 inelastic	0.5 – 6 MeV	10-20%	4-5% (SFR), 2% (GFR)
U-238 capture	9 keV – 25 keV	9%	3-4% (SFR), 1.5% (GFR)
Pu-239 capture	2 keV - 67 keV	7-15%	6% (SFR), 3% (GFR)
Pu-240 capture	9 keV - 67 keV	10-11%	6-7% (SFR)
Pu-241 fission	9 keV – 1.35 MeV	9-20% (!?)	3% (SFR, GFR)
Na-23 inelastic	0.5 – 1.35 MeV	20-30%	4-8% (SFR)
Fe inelastic	0.5 – 1.35 MeV	15-25%	3-8% (SFR)
C elastic	0.5 – 1.35 MeV	5% (?)	2% (GFR)
Si-28 inelastic	1.35 – 2.2 MeV	50%	6% (GFR)

Subgroup-26 final report (OECD-NEA/WPEC M. Salvatores, R. Jacqmin): www.nea.fr/science/wpec/volume26/volume26.pdf

> High priority request list for nuclear data (OECD-NEA/WPEC Subgroup-C, A. Plompen) www.nea.fr/html/dbdata/hprl

۰nr.›

Neutron induced fission reaction (234U)

Ionisation chamber

Digital data acquisition in fission reactions

JRC

EUROPEAN COMMISSION

- a) Efficient Pile-up rejection
- b) Identification of false triggering
- c) Improved pulse height resolution

=> Accurate fission yield data

Angular anisotropy

<nr.>

Mass distributions

<nr.>

FRAGMENT MASS (A)

Neutron emission in fission of ²⁵²Cf(SF)

- Important nuclear data for understanding of the fission process and for nuclear applications
- Scarce available experimental data
- Quality of experimental data ??

Dependence of v_{bar}

²³⁵U(n_{th},f) prompt fission neutron spectrum

۰nr.›

Requested by subgroup 9 of WPEC

Persisting discrepancies between macroscopic (integral) and microscopic data

Experiment: Setup

<nr.›

TOF measurement technique used (L = 3 m)

JRC

EUROPEAN COMMISSION

- 3 neutron detectors LS301 (NE213 equivalent, size: 4" x 2" =10.16 x 5.08 cm) SCIONIX in heavy shielding
- Thin ²³⁵U (97.7%) target 112 μg/cm² at centre of lonisation chamber, fission count rate 50.000 /sec
- ²⁵²Cf target placed simultaneously into the same chamber shifted 5 cm relative to ²³⁵U target (20.000 fissions/s)

High Fission Fragment counting efficiency 98%

JRC

EUROPEAN COMMISSION

12

 Since 3 detectors were used, 1.4 detector 1 they can be cross-checked for - detector 2 reliability of results R(E), <E>=1.988MeV - detector 3 1.2 Each Run was analyzed separately to check for systematic errors 1.0 No angular effect **8.0 Ratio to Maxwellian** 0.6 10 2 6 8 0 E (MeV)

Excellent agreement of 3 individual neutron detectors

Comparison to Literature Data

<nr.>

- Starostov et al.: Gas-scintillation-ionization detector + ²³⁵U, IC, Reactor, relative to ²⁵²Cf
- Excellent agreement with Starostov et al. over full energy range
- Our data and Starostov et. al. contradict ENDF/B-VII evaluation and the Los Alamos Model (Madland Nix)

impact benchmarks k_{eff} as strongly as cross sections:

- + 500 pcm for solutions (unique amongst all libraries)
- ✤ 300 pcm for thermal U but + 300 pcm for fast U
- ✤ + 800 pcm for thermal Pu but 300 pcm for fast Pu

> are as important as cross sections or angular distributions

=> IAEA CRP on Prompt fission neutron spectra

- Recent measurements performed by IRMM @ reactor in Budapest (EFNUDAT project)
- previous data from IPPE Obninsk confirmed
- Disagreement with the Los Alamos model (up to now still accepted reference)
- (new data adopted in most recent ENDF/B-VII library)
- New efforts for an improved theoretical description in collaboration with LANL and JINER, Minsk (ISTC project)

Benchmarking critical assemblies

K_{eff} very sensitive to mean energy and shape of PFNS

Prompt fission neutron spectrum

Successful modelling needs high quality input data: mass yield and kinetic energy of fission fragments

۰nr.›

²⁴¹Am capture and transmission

Resonance parameters for ²⁴¹Am + n Literature data

<nr.>

Transmission

- -Derrien and Lucas (EXFOR)
 - Saclay, LINAC (17 m and 53 m)
 - AmO₂ powder
 - ¹⁰B(n,α₁), 478 keV with Nal
- -Kalebin et al. At. Energ. 40 (1976) 303
 - Chopper
 - AmO₂ powder
 - BF₃ proportional counters
 - Dimension target in beam
 - ~0.8 and 0.4 mm

Capture

- Weston and Todd NSE 61 (1976) 356
 - ORELA (20 m and 85 m)
 - AmO₂ + S powder
 - Total energy detection + WF (C6F6)
 - Normalization: $\sigma(n_{th},\gamma) = 582 \text{ b}$
- Jandel et al. PRC 78 (2008) 034609
 - LANSCE (20 m)
 - ²⁴¹Am electroplated on Ti
 - Total absorption (4π)
 Mγ = 4 and 3.75 < Eγ_{tot} < 5.4 MeV
 εn,γ = 12.5 ±1.0 %
 - Normalization at 4.9 eV of ¹⁹⁷Au(n, γ) RP for 4.9 eV (not specified) no limits on M γ and E γ_{tot} $\Rightarrow \sigma(n_{th}, \gamma) = 655 \pm 33$ b

EUROPEAN COMMISSION Impact of target properties ²⁴²PuO₂ powder diluted in carbon powder at 300 K

۰nr.›

Homogeneous sample

REFIT: accounting for the powder grain size

TOF - experiments at GELINA

<nr.>

• Sample (JRC-ITU Karlsruhe)

- AmO₂ homogeneously diluted in a Y₂O₃ matrix (solgel method)
- Ø = 22.1 mm
- Homogeneity verified by X-ray radiography
- Impurities : mass spectrometry
- $\sim 325 \text{ mg}^{241}\text{Am}$ (40 GBq) by γ - spectroscopy (calorimetry planned)

Transmission at 25 m

– ⁶Li-glass scintillators

Capture at 12.5 m

- Total energy detection
- C_6D_6 detectors + WF (validated by exp.) Flux : ¹⁰B(n, α) IC
- Normalization
 - Internal : Γ_n from transmission
 - External : 4.9 eV of ¹⁹⁷Au+n (saturated)

EUROPEAN COMMISSION	omparison with LAN E _r and	Institute for Reference Materials and Measurements		
				۰nr.›
E _r / eV		Γ_{γ} / meV		
GELINA	LANSCE	GELINA	LANSCE	Weston and
				Todd
0.30605 ± 0.000014	0.3051 ± 0.0002	42.4	44.4 ± 0.3	46.9 ± 0.3
0.57387 ± 0.00026	0.5724 ± 0.0003	41.1	43.3 ± 0.5	47.3 ± 0.3
1.27106 ± 0.00058	1.2718 ± 0.0004	42.6	45.3 ± 0.7	49.2 ± 0.3

GELINA :

- Flight path length traceable to $E_r = 6.6735 \pm 0.0030$ eV eV of ²³⁸U + n (ORELA)
- Response function of GELINA in REFIT includes neutron storage term (Ikeda and Carpenter)

<nr>>

- Data needs for innovative systems (e.g. GEN IV) are summarized in HPRL and WPEC Subgroup 26 document.
- To structure our work we have strong collaboration with international organizations (NEA, IAEA) and participate in EU programs (e.g. EUROTRANS, EFNUDAT,).
- Theoretical modelling of reaction cross sections and the fission process strongly dependent on high quality experimental data as input to the codes.
- New IAEA CRP started due to the problems encountered with the PFNS. First result of new PFNS shows better agreement with benchmarks. Points to the importance of the PFNS.
- = > Prompt neutron multiplicities and spectra are crucial nuclear data

- Impact of target properties and importance of target characterization
- Transmission and capture yield (counts) are fully consistent

 \Rightarrow in a simultaneous analysis of T_{exp} and Y_{exp} the application of a weighting function is in first approximation not required

- Capture data at 400 Hz and 800 Hz (extension of energy region)
- Application of WF and verify normalization by 4.9 eV of ¹⁹⁷Au + n
- Determination of ²⁴¹Am quantity by calorimetry ($\delta n/n < 1.0$ %)

 $\Rightarrow \sigma(n_{th},\gamma)$ and (E_r, g Γ_n , < Γ >) up to ~ 300 eV

۰nr.›

Thank you for your attention ©