

<u>C. H. Pyeon</u>, J. Y. Lim, T. Misawa, H. Unesaki and K. Nakajima Research Reactor Institute, Kyoto University, Japan

C. H. Pyeon, Kyoto Univ., Japan 1

Contents

- Background and Purpose
- > ADS project in Kyoto Univ. (KART & Lab project)
 - <u>Kyoto</u> <u>University</u> <u>Critical</u> <u>Assembly</u> (KUCA)
 - <u>Fixed-Field</u> <u>Alternating</u> <u>Gradient</u> (FFAG) accelerator
- ➤ ²³⁵U-loaded ADS experiments with 14 MeV neutrons
 - Static experiments: Reaction rates, Neutron spectrum
 - Kinetic experiments: Subcriticality, Neutron multiplication (k-source), Neutron decay constant
- ➢ ²³⁵U- and ²³²Th-loaded ADS experiments with 100 MeV protons
 - ²³⁵U-ADS: World's first injection of spallation neutrons
 - ²³²Th-ADS: Analyses of Thorium fission reactions

Summary

Background and Purpose

Background

ADS Research and Development for producing energy and for transmuting MA and LLFP (in Kyoto Univ. as <u>Energy amplifier system</u>)

Successful extraction of proton beams of 100 MeV & a few pA at a main ring of FFAG accelerator on <u>Oct. 2008</u>

- ADS experiments with 100 MeV protons & a few pA on <u>4th Mar. 2009</u> (²³⁵U-loaded core in well-thermalized spectrum)
- Thorium-loaded ADS experiments with 100 MeV protons & 30 pA on <u>3rd Mar. 2010</u> (²³²Th-loaded core in hard spectrum)

Purpose

Examine neutronic characteristics of ADS coupling with the KUCA A-core with high-energy protons (from the FFAG accelerator)

ADS composition in KUCA

Basic exp. on ADS with 14 MeV neutrons

♦ Critical Assembly

- Highly-enriched uranium
- Polyethylene reflector and moderator
- Thermal neutron field
- Zero power reactor (Ave. mW order)

Tritium target

Fig. Cockcroft-Walton type Accelerator

14 MeV neutrons

Fig. KUCA A-core

- ♦ <u>Accelerator (D-T reactions)</u>
- 14 MeV pulsed neutrons
- Pulse repetition: 0.1 to 30,000 Hz
- Pulse width: 0.3 to 100 μs
- Spot size: 2.5 cm
- Yield: 1×10⁸ 1/s, Intensity: 0.5 mA
- HV: 180 keV, Duty ratio: Max. 1%

KUCA A-core (Solid-moderated core)

Fig. KUCA A-core (Reference core)

- KUCA A-core -A solid-moderated and -reflected core

Fig. Image of KUCA A-core and fuel assembly loaded

Neutron guide and Beam duct

Fig. Top view of neutron guide core

C. H. Pyeon, Kyoto Univ., Japan 8

Static experiments (14 MeV neutrons)

- <u>Confirmation of calculation precision by Monte Carlo approach</u> (Reaction rates, Neutron spectrum)

Kinetic experiments (14 MeV neutrons)

- Investigation of measurement technique using the optical fiber detection system
- Feasibility of subcriticality measurement and position dependence of subcriticality

First injection of spallation neutrons

World's first injection of spallation neutrons into the core (March, 2009)

FFAG accelerator

- Energy: 100 MeV
- Intensity: About 3 pA
- Repetition rate: 30 Hz
- Tungsten (W) target:80 mm
 and 10 mmt
- KUCA A-core: ²³⁵U-loaded core
 - Highly-enriched uranium
 - Polyethylene moderator/reflector
 - Subcriticality: around $k_{eff} = 0.992$

Static exp. with 100 MeV protons

Kinetic exp. with 100 MeV protons

Neutron multiplication by spallation neutrons generated by protons

²³²Th-loaded exp. with protons

FFAG accelerator

- Energy: 100 MeV
- Intensity: 30 pA
- Repetition rate: 30 Hz
- W (tungsten) target:80 mmø and 10 mmt
- KUCA core using Thorium
 - Nat. Thorium metal
 - No moderator, Graphite

Objective: Confirm thorium fission reactions by spallation neutrons

Exp. settings of ²³²Th-loaded ADS exp.

²³²Th-loaded ADS with Graphite

Confirmation of increasing reaction rates of 50% at max. in the core

=> Decreasing the leakage effect by the large core size

MCNPX (ENDF/B-VII) analyses

Confirmation of ²³²Th fission reactions generated by spallation neutrons (using "fission turnoff" option in MCNPX)

²³²Th-loaded ADS with 100 MeV protons

Important knowledge

Fig. Neutron density of time evolution by Pulsed neutron method in Th-loaded core

- No deduction of Subcriticality (--> Very large neutron decay constant)
- Further efforts for a variety of ADS options using fuels (Th, HEU, NU) and moderators (Poly., AI, Graphite and Be)

ADS project (Kart & Lab. project) in KURRI

- Energy amplifier system using ADS with high-energy protons

ADS experiments with 14 MeV neutrons

- Static and Kinetic experiments
- ADS experiments with 100 MeV protons
 - 235U-loaded ADS: World`s first injection of spallation neutrons into the KUCA A-core
 - <u>232Th-loaded ADS</u>: Experimental analyses of Th fission reactions

In the future

- Further efforts for a variety of ADS options using fuels (²³²Th, HEU and NU) and moderators (Poly., Graphite, Al and Be) for nuclear transmutation using ²³⁷Np and ²⁴¹Am (foil or detector)
- Experimental analyses of conversion ratio of ²³²Th fission and capture reactions

