

Oxide fuels and targets for transmutation

F. Sudreau,

J.M. Bonnerot, E. Brunon, D. Warin,

G. Gaillard-Groléas, M.P. Ferroud-Plattet

Nuclear Energy Division

Introduction

- Direction 1 of the Act dated 30 December 1991 on the management of High Level, Long-Lived radioactive waste
- Explore solution to separate and transmute them into stable elements or elements with much shorter half-life
- Main radioactive elements
 - ✓ Fission Products: Caesium, iodine and technetium
 - ✓ Minor Actinides: Americium, Neptunium, Curium
- CEA launched a vast programme to demonstrate the scientific and technical feasibility of minor actinide transmutation:
 - In MOX fuels (homogeneous method) in PWR and Sodiumcooled fast reactor
 - On Inert Matrix support (heterogeneous method)
 - In Sub-Critical reactor dedicated to transmutation

Evaluation of Homogeneous Transmutation in a PWR

Simulations made in 2002 :

	MOX	MOX-UE
Pu/ML (%)	9,026	8
U5/U (%)	0,25	4,3
AM/ML (%)	0	1,13
Burn up	60 GWd/tHM	
Xe+Kr produced (mm ³ /g ox)	1250	1400
He produced (mm ³ /g ox)	110	510
Internal Pressure (bar)	105	213

Above 100 mm³/g, He is fully released

⇒ Internal pressure incompatible with the current design of EPR rods

(but there is no experimental data on gas release for MA fuels in PWR)

⇒ Possible solutions

- ✓ Reduce the americium content (around 0.5 %)
- ✓ Reduce the initial internal He pressure into the rod (efficiency against He release ?)
- ✓ Reduce the height of the fuel column (5 % : Impact on the reactor functioning to be evaluated)

Evaluation of Homogeneous Transmutation in a FNR

Nacre

- A SuperPhénix S/A including Np (2%) in the fuel has been successfully manufactured
- Trabant (CEA, ITU, FZK)
 - Irradiation in HFR (Pu = 40 % and Np = 5 %; BU = 9.3 at%)
- ⇒ Fuels containing neptunium behave as satisfactorily as the standard SFR fuel
- SUPERFACT 1 (CEA, ITU)
 - Irradiation in PHENIX (Am = 2% and Np = 2 %; BU = 6.5 at%;
 Transmutation rate for MA = 30 %)
- ⇒ First pin scale demonstration of the technical feasibility of the homogeneous-mode transmutation of the minor actinides in FNR

Trabant

SUPERFACT

Inert Matrix: Introduction

- Dilution of MA into Inert Material = Target
 - ⇒MA content : 1.5 to 2.5 g.cm⁻³
 - ⇒Main issues to be studied
 - ✓ Materials: actinides compound and inert matrix
 - ✓ Damages due to FP recoil
 - ✓ Excessive swelling due to He production
- Materials for inert matrix
 - ✓ High Thermal conductivity after material damaging
 - ✓ Low swelling induced by neutrons and FP damaging
 - √ High melting point
 - ✓ No chemical interaction with actinide compounds, clad and coolant
- ⇒ First selection (Bibliography, out of pile measurements):

MgO, ZrN, TiN, Cr, V, Mo, Al_2O_3 , $MgAl_2O_4$, $Y_3Al_5O_{12}$ $St-ZrO_2$, CeO_2

Compatible with Sodium

Compatible with Water

⇒ Irradiations

- ✓ Inert Matrices alone (neutron damaging): T2bis, SANTENAY, MATINA 1A
- ✓Inert Matrices with Fissile Compound (FP damaging): T3, THERMET, MATINA 1A

Synthesis of first MATINA 1A results:

Swelling of inert matrices due to a fast fluence = 6.10²⁶ neutrons.m⁻²

Swelling of alumina under fast neutron flux: synthesis

Synthesis of first MATINA 1A results:

Swelling due to neutron flux and Fission Products damages

- Fission Products Damaging process is different from a matrix to another
- It seems
 - ✓ MgO : Sensitive to FP damaging
 - ✓ MgAl₂O₄: Good stability at high temperature
 - $\checkmark Al_2O_3$: Positive effect of the temperature (1400 °C with UO₂ against

550 °C without UO₂): Damage annihilation?

Swelling of **magnesia** due to neutron flux and Fission Product damages : synthesis

- MATINA 1A and BORA-BORA are results obtained by the CEA in 2005
- New **BORA-BORA** results expected in 2006 (BU_{vol} = 300 GWj.m⁻³)
 - ⇒ Confirmation of the swelling "saturation"?

Transmutation in Heterogeneous mode Technical feasibility: ECRIX

Demonstration of the technical feasibility

- □ Irradiation in representative conditions (coolant, neutron spectrum, ...)
- ⇒ ECRIX Irradiation
- ✓ In Phénix, from March 2003 to March 2006
- ✓ AmO_{1.6} micro dispersed into MgO
- ✓ Am = 0.7 g.cm⁻³ (2.75 g of Am in 200 mm height column)
- ✓ Objective Fission Rate = 30 at% (≈ 90 % Transmutation Rate) → 35 at% have probably been reached
- ⇒ PIE results will probably allow to increase the performance of magnesia targets: Am amount and fission and transmutation rates

Target

Thermo mechanical Model

ECRIX: Irradiation historic

Transmutation in Heterogeneous mode Inert Matrix : Main achievements

- Selection of the most promising materials
 - ✓ MgO for FR
 - \checkmark (Zr,Y)O₂ for PWR, FR...
 - ✓ MgAl₂O₄ discarded at low or intermediate temperature (amorphization)
- > FP damaging: Possible solutions
 - ✓ High temperatures (1000 1200 °C): allow damage annealing
 - Macrodispersion: Actinide compounds dispersed under the form of 100 μm particles could limit the damaging of inert matrix
- He retention and swelling
 - ✓ After results from T4 and T4bis experiments (high swelling due to He bubbles accumulation in spinel)
 - → Results from ECRIX (34 % of Am transmutation rate in MgO)
 - → Development of porous target (HELIOS irradiation in HFR)
 - → Target operating at high temperature (T > 1000°C)

Transmutation in dedicated mode

➤ Fuel Design Criteria

- ✓ Multi-recycling : Average BU = 20-30 at%
- ✓ High MA content : > 3 g TRU/cm³ & degraded Pu
- ✓ Inert matrix volume fraction > 50 vol%
 - To make easier the manufacturing
 - To keep the benefit of the inert matrix properties

> BORA-BORA

- ✓ Irradiation in BOR60 : 60 % PuN/ZrN ; 40 % PuO₂/MgO ; B.U. = 11 at%
- ⇒ PIE results : Good behaviour of the fuel element (pellet and cladding)
- ✓ Irradiation extension : 18.8 at% BU ⇒ PIE in progress

>FUTURIX/FTA (CEA-DOE-ITU-JAERI)

- ✓ Irradiation in Phénix from 2007 to 2008
- ✓ 8 types of fuel irradiated in the same conditions:
 - ✓ 2 Metallic with sodium bond (up to 1.2 g.cm⁻³ of Am)
 - ✓ 2 Nitride with sodium bond (up to 2.7 g.cm⁻³ of Am)
 - ✓ 2 Oxide CER-CER (MgO) Composite (up to 2.0 g.cm⁻³ of Am)
 - ✓ 2 Oxide CER-MET (Mo) Composite (up to 1.0 g.cm⁻³ of Am)

Conclusion

- Transmutation in Homogeneous mode: SUPERFACT 1 is a first pin scale demonstration of technical feasibility
- Transmutation in Heterogeneous mode:
 - > Today
 - MgO confirmed at the reference matrix, ZrO₂ (and Mo⁹²) is an alternative
 - MgAl₂O₄ is discarded: not stable enough under irradiation at low Temp.
 - ECRIX (Irradiation including Am): NDE are underway
 - ⇒ Demonstration of the pin scale technical feasibility
 - From 2008 to 2010: Last Phenix Irradiations and PIE
 - → Performance of the microdispersed concept: ECRIX
 - → Influence of the target microstructure on FP damaging: MATINA 2-3 and COCHIX
 - → Performances of the zirconia matrix: MATINA 2-3 and CAMIX
 - → Influence of high temperatures on damage annihilation: MATINA 2-3
- Transmutation in sub-critical dedicated reactor → FUTURIX/FTA
 - Irradiation: from 2007 to 2008
 - PIE: from 2009 to 2010