

Strategic Aspects on Waste Management in Decommissioning

Arne Larsson (Cyclife-EDF) Thom Rannemalm (OKG), Sofia Eliasson (OKG), Per Lidar (Studsvik), Gunnar Hedin (Westinghouse), Niklas Bergh (Westinghouse)

Background

- O1/O2 early retirement due to current market situation
- OKG decided to perform a waste management strategy investigation (2016)
- A decision base for the global strategy
- The investigation includes all material and waste from decommissioning, based on the decommissioning studies of O1 and O2.

Waste Led Decommissioning

Important principles

Prior to dismantling and demolition

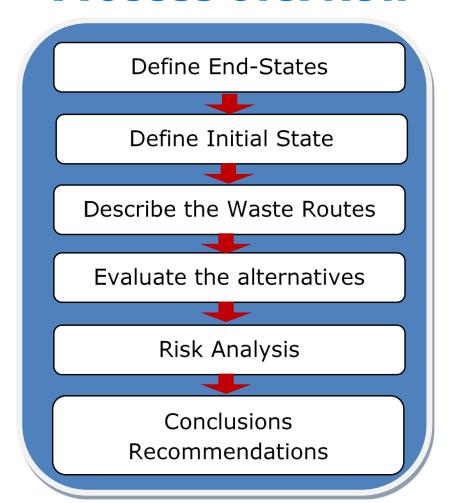
mandatory with a plan for materials and waste arising Zero tolerance for waste streams without defined and accepted disposition route All radioactive and potentially radioactive materials must be registered in accordance with a defined procedure

Data shall immediately be registered and quality assured.

Traceability throughout the process up to disposition

(confirmed end-state)

The Material and Waste Management should not be a limiting factor during dismantling and demolition.



Waste Led Decommissioning

- The cost for management of radioactive waste is not proportional against the radioactivity content
 - "Extremely Low Risk" is very low cost (material value)
 - o "Low Risk" is low cost
 - "Risk" can be low cost
 - LLW is expensive due to large volumes
 - ILW is expensive due to high handling costs
- A weak waste management process drives "hidden costs"
- Frequent and fast removal of material and waste will increase the performance in the decommissioning project
- Reconditioning is expensive make it right the first time

Decommissioning Waste Strategy Process overview

Step 1: Available End-States

- General clearance
 - Reuse
 - Recycling
 - Disposal as conventional waste
- Conditional clearance
 - Reuse, recycling or disposal with conditions
 - Significantly higher clearance levels
- Disposal in VLLW repository (Landfill)
- Disposal in the geological repository

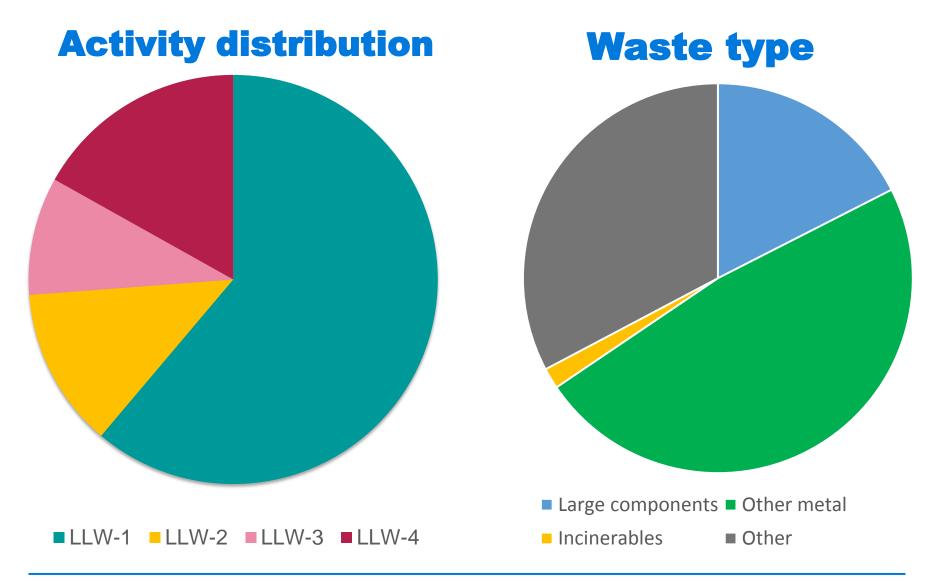
the strategy process

Step 2: Initial State

- Take benefit of operational history and the available characterisation information. The more you **know** – the better
- **Categorisation** of material and waste based on radiological and non-radiological properties
- May have to be revisite several times throughou Strategic decisions on large components
- Quantify volumes and masses

Waste Categories

Waste Category	Specific activity [Bq/g Co-60]		
Extremely Low Risk	Contamination cannot occur		
Low Risk	Contamination of significance for clearance should not occur		
Risk	< 0,1		
LLW-1	0,1 – 1		
LLW-2	1 – 20		
LLW-3	20 – 100		
LLW-4	100 – 1 000		
ILW	> 1 000		



Amounts of Materials and Waste

Waste category	Total [Mg]	
Extremely low risk	221 400	
Low risk	Not quantified	
Risk	11 400	
LLW-1	6 540	
LLW-2	1 350	
LLW-3	997	
LLW-4	1 805	
ILW	2 440	Extremely low risk + low risk = Risk = LLW 1-4 = ILW

Low Level Waste

Step 3: Alternative Waste Routes

- Dispose waste as is after dismantling i.e. no treatment
- On-site waste treatment centre inside facility
- On-site waste treatment centre outside facility but on site
- Ship to dedicated external waste treatment facility

Large waste volumes for disposal

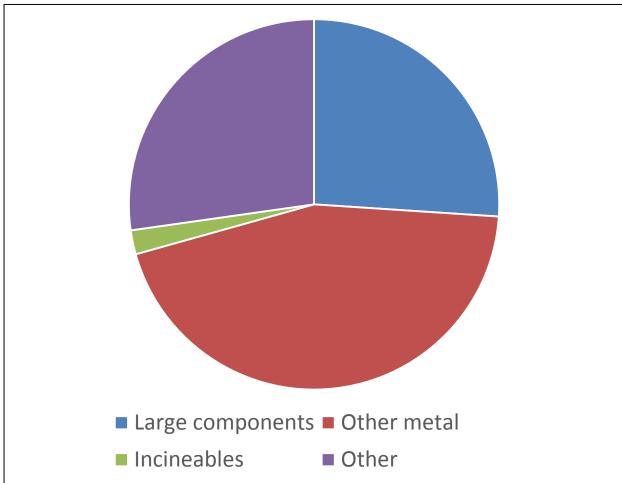
Logistical challenge Low investment

High investment Minimum impact on dismantling process

> Transfer of risk Less volume for disposal

Step 4: Evaluate the Alternatives

Quantify


- Direct costs
- Indirect costs (including estimate of hidden costs)
- Investments in facilities and equipment
- Investments in competence
- Utilisation of organisation over time
- Utilisation of available disposal volume
- Impact on project performance (schedule)

The major cost driver in a D&D project

> Evaluate and compare

Distribution of costs for Low Level Waste

Step 5: Risks - Risk analysis

Uncertainties

- Known Knowns (low uncertainty)
- Known Unknowns (possible to estimate)
- Unknown Unknowns (impossible to quantify) Oh no It can't be true...

Reduced by additional characterisation activities of Known Unknowns

Mitigated by wider acceptance window for treatment/disposition

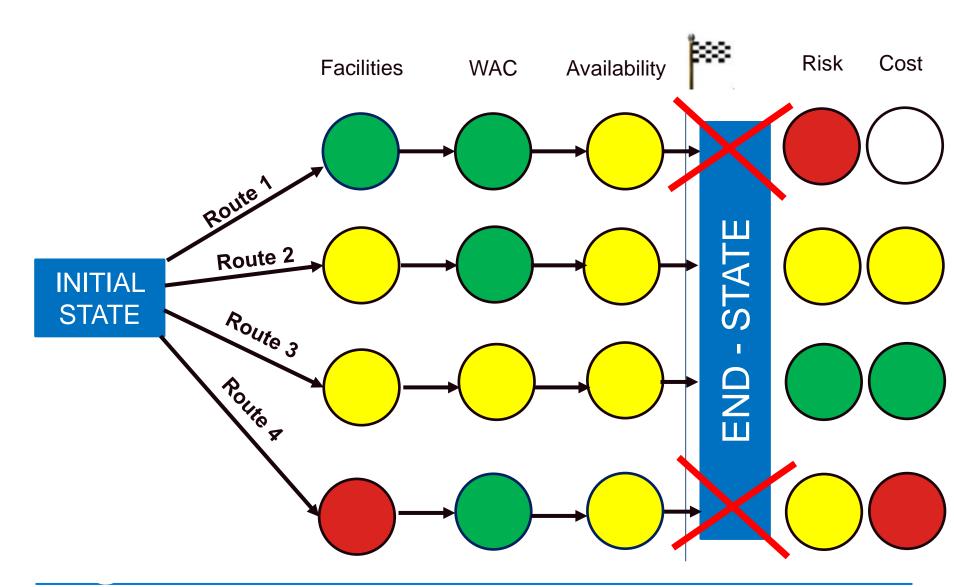
Practical considerations

- Availability of waste routes and disposition alternatives
- Efficiency in processes
- Where and how to recondition prior to future disposal, if needed

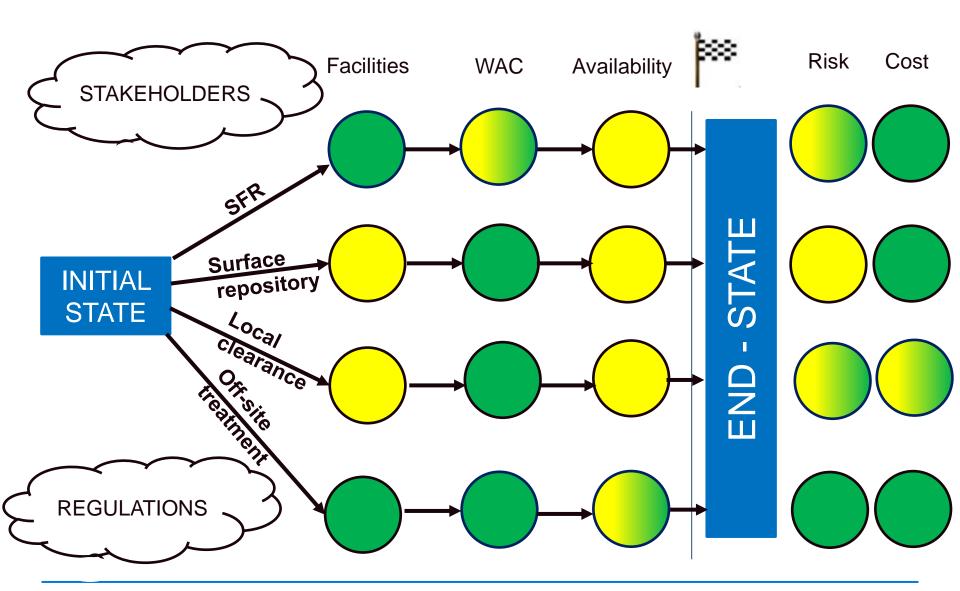
Reduce risks by keeping at least two waste routes and disposition alternatives open for each waste category

Plan - Mitigate

We may have a problem...

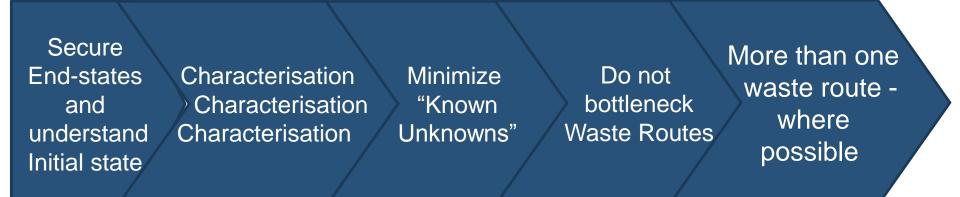

Risk analysis (excerpt)

Risk description	Probability	Consequence	Cost impact	Mitigation to reduce risk
Poor characterisation/ categorisation of radiological and non- radiological properties	U-L	Additional efforts which delays the project	L-H	Robust processes, Record management, Quality assurance
Non-clearable waste to clearance station	Е	Re-routing of waste. Failure investigation	L	Education, Eng. barriers Quality assurance
New requirements for final disposal of waste	L	Opening of waste packages, Additional sampling Reconditioning	L-M M-H	Reversibility, Precaution measures, Record management, Dialogue with repository owner


Unlikely - Likely - Expected

Low – Medium - High

Conclusions - Example



Conclusions – Specific O1/O2

Summary

Implementation of Waste Led Decommissioning – a way to success

Thank you for your Attention!