

Measurement of the fission mass yields of Am242 at the Lohengrin Spectrometer

Charlotte AMOUROUX¹

A. Bidaud², N. Capellan², S. Chabod², H. Faust³, G. Kessedjian², U. Köster³,
A. Letourneau¹, F. Martin², T. Materna¹, S. Panebianco¹, Ch. Sage², O. Serot⁴

¹CEA, DSM-Saclay, France ²LPSC Grenoble, CNRS/IN2P3, France ³Institut Laue Langevin, France ⁴CEA, DEN-Cadarache, France

²⁴²Am(Z=95)

²⁴¹Am : 90% of the radiotoxicity of the nuclear waste (without plutonium) between 200 and 1000 years -> Transmutation of ²⁴¹Am

<u>PLAN</u>

- Experimental Set-up & Analysis Method
- Energy and Charge Distributions
- Uncertainties Determination
- Results

Experimental setup

□ High neutron flux Reactor

Target

□ Magnet: Selection A/q

Condenser: Selection: E/q

Detector: E 🥣

How do we measure the energy of the fragment?

\Box Δ E-E Ionisation Chamber

Valid if no correlation between E and q

In reality we have a correlation but its influence on Y(A) in less than 3%

Q-Distribution

 Example of Q-distribution : two differents cases
 Measured Charge is determined at the last crossed material (Nickel)

70 E, [MeV]

E-Distribution

Kinetic energy as a fonction of the fragment mass

E-Distribution

Amplitude [a.u]

Determination of the systematic error

This point is known twice

For the same mass as a

For all masses:

ν ν σ~3%

Charlotte AMOUROUX-WONDER -25/09/2012

Sources of relative uncertainties and their respective contributions.

Source	Contribution
Statistical	~1 %
Extrapolation of the low part of the energy distribution	1.5 %
Extrapolation of the high part of the energy distribution	1%
Discrepancies between the two measurements of the common point	3%
Normalisation	?
Total of the systematic error	3.5%

Fission Yields of Am-242

□ <u>Objectives of the experiment :</u>

- Fission Mass Yields from Am-241(2n,f)
- Is there any difference between the fission yields of Am-242(n,f) and Am-242m(n,f)?

How do we proceed to observe a possible difference ?

of the target (large energy shift)

B: vaccum problem

What is the maximum possible difference ?

Hypothesis: X=0.

General case : **Г~1**

$$\Gamma(t_1, t_2) = \frac{\gamma(t_1)}{\gamma(t_2)} = \frac{(1 + \beta(t_1) * X')}{(1 + \beta(t_2) * X')}$$

$$\sigma_{\Gamma} = |\beta(t_2) - \beta(t_1)| * \sigma_{X'} \text{ for } X' = 0$$

with $|\beta(t_2) - \beta(t_1)|_{max} = 0.17$ and $\sigma_{\Gamma} \sim 0.08$ (0.04 for all σ_{γ}) $\sigma_{\gamma} \sim 0.47$

Charlotte AMOUROUX-WONDER -25/09/2012

If we know Y_1^m et Y_2^m then:

 $\beta(t_2)$ =0,5 during the measurement of the masses so σ_{Γ} ~0,11 (0,04 for all σ_{γ} and 0,07 for σ_{γ_m})

Conclusions

□ No difference between the yields: quantification on-going.

□ If you assume they are equal ...

Future

Back-up

Comparaison with the GEF code(June 2012)

Number of fissions

Evolution of the kinetic energy as a function of time

FWHM of the energy distribution as a

function of time

