Sample homogeneities

Recent Developments in the CONRAD Code regarding Experimental Corrections

P. Archier¹ G. Noguère¹ O. Litaize¹ C. De Saint Jean¹ P. Schillebeeckx² S. Kopecky² K. Volev²

¹CEA, DEN, DER, SPRC, LEPh, Cadarache, F-13108 Saint-Paul-lez-Durance, France

²JRC-IRMM, Retieseweg, 2440 Geel, Belgium

WONDER-2012, 26/09/2012

- Energy/ToF experiments
 - Needs for Time-of-Flight measurements in CONRAD
 - Test case with Cd113 transmission
- Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT
- Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

- Energy/ToF experiments
 - Needs for Time-of-Flight measurements in CONRAD
 - Test case with Cd113 transmission
- 2 Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT
- 3 Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements
 - Conclusions

Needs for Time-of-Flight measurements in CONRAD

Before in CONRAD:

Measurements had to be given in energy, why?

- because theoretical models work with energy,
- because there are less experimental corrections when analysis are carried out in the URR and the continuum energy regions.

Needs for Time-of-Flight measurements in CONRAD

Before in CONRAD:

Measurements had to be given in energy, why?

- because theoretical models work with energy,
- because there are less experimental corrections when analysis are carried out in the URR and the continuum energy regions.

Now in CONRAD:

Measurements can be given both in energy and in ToF:

- because most experiments for the resonance range use the ToF technique,
- because it goes naturally when one has to use resolution functions, in time/distance (see next section).

Test case with ¹¹³Cd transmission

Transmission data (S. Kopecky)

- Analysis between 0.04 eV and 0.6 eV (first resonance of ¹¹³Cd)
- Areal density: 1.3643.10⁻⁴ at./b
- ¹¹³Cd abundance: 0.1222
- Doppler: FreeGas model, effective temperature: 298.5 K
- Flight Path: 26.464 m
- Time Offset: -684 ns

Energy (eV)

10⁻¹

1

0.8

0.6

0.4

0.2

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
0●	0000	000	00
Test case wit	h ¹¹³ Cd transmis	ssion	

Wrong flight path...

The flight path can be fitted in CONRAD:

- test with a bad FP = 28 m (instead of 26.464 m)
- ask the code to "find" the correct flight path

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	00
-			

Energy/ToF experiments

- Needs for Time-of-Flight measurements in CONRAD
- Test case with Cd113 transmission

Resolution Functions

- Resolution Functions?
- Analytical Resolution Function
- Numerical Resolution Function
- Comparisons between CONRAD and REFIT
- 3 Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

Conclusions

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	●000	000	00

Resolution Functions?

All experimental data are resolution broadened:

The true observables are

$$T_{eff}(E) = \int R(E', E) T(E) dE'$$
(1)

$$Y_{eff}(E) = \int R(E', E) Y(E) dE'$$
(2)

Deviation in Time-of-Flight

- Accelerator burst width tb
- Time channel width t_c
- Target-moderator assembly Lmod
- Lithium glass detector *L_{det}* (for transmission)
- . . .

Energy/ToF experiments Resolution Functions Sample homogeneities Conclusions OCO Conclusions Conclusi

Analytical distribution used for moderator

$$R(t) \propto \left(\frac{t}{\lambda}\right)^{\left(\frac{n}{2}-1\right)} \cdot \exp\left(-\frac{t}{\lambda}\right)$$
 (3)

with $\lambda,$ the mean free time (or mean free path) of neutrons in the moderator.

Implementation in CONRAD

- you can choose if you want a distribution in time (ns) or in distance (m)
- λ is currently constant with the incident neutron energy, whereas it can be energy-dependant in REFIT and SAMMY

Numerical Resolution Function (User Defined RF)

Distributions given by the user

Most of the time calculated with Monte-Carlo codes (MCNP, ...)

- They can describe a part (moderator, detector...) or the whole experimental setup
- Each distribution is given for a given incident neutron energy

Implementation in CONRAD

- you can have distributions in time (ns) or in distance (m)
- we use a log-lin interpolation for neutron energies between two distributions

Comparisons between CONRAD and REFIT

Capture cross-section

- ⁵⁶Fe radiative capture
- Analysis between 1120 eV and 1180 eV
- Doppler: FreeGas model, effective temperature: 296.3 K
- Flight path: 28.419 m

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	00
—			

Energy/ToF experiments

- Needs for Time-of-Flight measurements in CONRAD
- Test case with Cd113 transmission
- 2 Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT
- Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

Conclusions

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	00
	1.1		

Inhomogeneities

For thin powder sample, such as U/Pu oxydes

- Large porosity (holes)
- Thickness of the sample is not constant

From the paper of S. Kopecky in ND2007

- A log-normal distribution has been used to describe the thickness in the sample,
- This model can be used in REFIT to account for those inhomogeneities.

These experimental corrections have been implemented in CONRAD in the case of powder sample analysis

Energy	ToF experiments	Resolution Functions	Sample homogeneities	Conc	clusions
00		0000		00	
Ex	perimental mo	deling of tra	nsmission		
	Transmission wit	hout correction	า		
		$T_{eff}(E) = \exp\left[-\frac{1}{2}\right]$	$-\mathbf{n}\cdot\sigma_{tot}\left(\mathbf{E} ight)$]	(4)	
	with <i>n</i> the areal den	sity or thickness	(at./barn).		

Energy/To	oF experiments	Resolution Functions	Sample homogeneities ○●○	Conclusio OO	ns
Exp	perimental mo	deling of tra	nsmission		
	Transmission wit	hout correctio	n		
		$T_{eff}(E) = \exp[-$	$-\mathbf{n}\cdot\sigma_{tot}\left(\mathbf{E} ight)$]	(4)	
,	with <i>n</i> the areal den	sity or thickness	(at./barn).		
ſ	Transmission wit	h porosity			
	$T_{eff}(E)$ =	$= (1 - p) \cdot \exp\left[-\right]$	$\left[\frac{n}{(1-p)}\cdot\sigma_{tot}(E)\right]+p$	(5)	

with *p*, the porosity or holes in the sample (in %).

Energy 00	ToF experiments Resolution Functions	Sample homogeneities ○●○	Conclusio 00	ons
Ex	perimental modeling of tr	ansmission		
	Transmission without correction	on		
	$\mathit{T_{eff}}\left(\mathit{E} ight) = \exp \left(\mathit{E} ight)$	$[-n \cdot \sigma_{tot}(E)]$	(4)	
	with <i>n</i> the areal density or thickness	s (at./barn).		
	Transmission with porosity			
	$T_{eff}(E) = (1-p) \cdot \exp\left[$	$-\frac{n}{(1-p)}\cdot\sigma_{tot}\left(E\right)\right]+p$	(5)	
	with <i>p</i> , the porosity or holes in the s	ample (in %).		
	Transmission with porosity an distribution	d an areal density		
	$T_{eff}(E) = (1-p) \cdot \int_0^\infty p df(x) \exp(i h x) dx$	$\operatorname{p}\left[-\frac{n\cdot x}{(1-p)}\cdot\sigma_{tot}\left(E\right)\right]dx+p$	(6)	

with pdf(x), a probability density function (log-Normal in this case)

Transmission data (S. Kopecky)

- Analysis between 1 eV and 3.5 eV
- Areal density: 2.51.10⁻⁵ at./b
- Doppler: FreeGas model, effective temperature: 295.45K

Testeses	the 242 D two is a real		
00	0000	000	00
Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions

Test case with ²⁴²Pu transmission measurements

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	00

Energy/ToF experiments

- Needs for Time-of-Flight measurements in CONRAD
- Test case with Cd113 transmission
- 2 Resolution Functions
 - Resolution Functions?
 - Analytical Resolution Function
 - Numerical Resolution Function
 - Comparisons between CONRAD and REFIT
- 3 Sample homogeneities
 - Inhomogeneities
 - Experimental modeling of transmission
 - Test case with Pu242 transmission measurements

Conclusions

Conclusions

Realized in CONRAD for the moment:

- Implementation of both energy/Time-of-Flight measurements,
- Implementation of analytical (χ^2) and numerical resolution functions,
- Validation of the resolution functions versus REFIT and SAMMY codes,
- Implementation of sample inhomogeneities (porosity and log-normal distribution) for transmission experiments.

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	•0
Conclusions			

Further developments:

- Add new analytical resolution functions (gaussian, ...),
- Add energy-dependancy for λ parameter,
- Add Crystal Lattice Model (almost ready!) to test on ²⁴²Pu transmission data.

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	•0
^ · ·			

Conclusions

Acknowledgement

This work has been carried out in the framework of the ERINDA project and the CEA/IRMM collaboration. A special thanks to the IRMM members for the fruitfull discussions and particulary to P. Schillebeeckx, S. Kopecky and K. Volev.

Energy/ToF experiments	Resolution Functions	Sample homogeneities	Conclusions
00	0000	000	0.

Thank you for your attention !

