DE LA RECHERCHE À L'INDUSTRIE

CyRUS : A code dedicated to the calculation and the analysis of the uncertainties of the decay heat

WONDER 2012 Jean-Christophe BENOIT

www.cea.fr

SEPTEMBER 24 – 28, 2012

Chapter 01 : INTRODUCTION

Chapter 02 : METHODOLOGY

Chapter 03 : NUCLEAR DATA

Chapter 04 : RESULTS

Definition

Decay Heat (DH) : Heat produced in a nuclear reactor by the irradiated fuel and structures when the reactor is stopped. It is linked to the α , β , γ radioactivity.

An issue for a long time

- 1900 : First discovered by P. CURIE, A. LABORDE (1903) in radium salts during the early years of radioactivity, Theoretical explanation by E. RUTHERFORD and F. SODDY (1904),
- 1940 : Characterization (Plutonium Project) in order to safely build a reactor to produce plutonium (BORST, BRADY, DAY & CANNON),
- 1974 : ANS Standard on decay heat,
- 1975 : First codes in order to propagate the uncertainties of nuclear data on the decay heat (SCHENTER, SCHIMTTROTH, SPINRAD...)
- 2008 : MERCI experiment (UOx pin PWR)
- 2010 : PUIREX during PHENIX Final Tests (whole core of the 350 MWth SFR)

1	903	1942	1974-75	2008-10
			CE	EA SEPTEMBER 24 – 28, 2012 PAGI

Reasons for a more precise calculation

More Safety and more Savings

Nuclear stage impacted	Time of cooling		
Safety Systems of cooling	0.1 second to 8 days		
Unloading of sub- assemblies from the core	5 to 25 days		
Road transport	1 to 10 years		
Reprocessing, Vitrification, Storage	4 to 3000 years		
Storage	50 to 300 000 years and more		

Develop predictive and validated codes

METHODOLOGY

DE LA RECHERCHE À L'INDUSTRI

METHODOLOGY

METHODOLOGY

Detailed Determinist Propagation Method

DE LA RECHERCHE À L'INDUSTRI

Cez

METHODOLOGY

METHODOLOGY

Many results

- The uncertainty of the decay heat,
- The contribution of any nuclide to the uncertainty of the decay heat
 + The reason of this contribution (sensibility or variance),
- The contribution of any parameter to the uncertainty of the nuclei
 + The reason of this contribution (sensibility or variance),
- The number of nuclei to which a parameter contribute significantly to the uncertainty
- The possibility to modify the covariance matrix of the parameters and to see the change on the uncertainty of the decay heat quickly (in less than 1 minute).

δDH

δрј

NUCLEAR DATA (JEFF3.1.1)

DE LA RECHERCHE À L'INDUSTRI

NUCLEAR DATA

DE LA RECHERCHE À L'INDUSTRIE

NUCLEAR DATA

Independent Fission Yields (JEFF3.1.1, 353 FP)

NUCLEAR DATA

Half lives (JEFF3.1.1, 369 nuclei)

CEA | SEPTEMBER 24 - 28, 2012 | PAGE 15

Half lives (s)

DE LA RECHERCHE À L'INDUSTRI

NUCLEAR DATA

Half-lives (s)

NUCLEAR DATA

Branching Ratios (JEFF3.1.1)

Lots of data are missing (94 known uncertainties and 128 missing)
 Low impact on the uncertainty of decay heat

- Low values of branching ratios ↔ High uncertainties
- High values of branching ratios \leftrightarrow low uncertainties

RESULTS

RESULTS

Burst fission curve of ²³⁵U (th)

Definition : Heat produced by the fission of one nucleus of a fissionable nuclide.

What is it used for ?

- Validation of nuclear data libraries (no impact of neutronics),
- Fast calculations of decay heat with fits of several exponentials (ANS Standard),
- Past : More precise than summation calculations because of missing nuclear data,
- Why ²³⁵U (th) :
 - Widely studied in order to perform an ANS Standard for decay heat
- Questions :
 - Consistency of the library (value + uncertainty) with the measurements ?
 - In case of a use of BFC derived from

DARWIN+JEFF3.1.1, what should be the value of the uncertainty of the calculation

"Parameters of importance for the calculation of the uncertainty of the decay heat

Comparison between the calculation and the experiments

- Good consistency of the decay data of JEFF3.1.1,
- Issue at 1 000 seconds
 - Scientific community seems to rely on DICKENS measurements,
 - LOTT, NGUYEN and JOHANSSON agree perfectly
 - NGUYEN and JOHANSSON (end of the studied range of time), LOTT (beginning of the studied range of time)

In the case of a use of burst 1.6 fission curves fitted from 1.4 DARWIN/JEFF3.1.1 values 1.4 and uncertainty from CyRUS, 1.2 the overall uncertainty must be $\pm 3 \sigma$: 1.0

9 %,
$$t \in [1; 2.10^5]s$$

15 %, $t \in [2.10^5; 1.10^7]s$

Details about this uncertainty

- Range of the uncertainty of the decay heat [2 %; 5 %]
- Increase of the uncertainty of the decay heat ↔ Decreasing number of important nuclei + "no correlation" assumption
- Specific structures appear,
- Isotopic concentrations are predominant ↔ independent fission yields

RESULTS

Energies

Half-lives

DH could benefit from an improvement of those nuclei : ⁹⁰Rb, ^{97m,98m}Y, ⁹⁹Zr, ^{97m,100,101,102,102m,103}Nb, ^{104,105,107}Mo, ¹⁰²Tc (JEF/DOC–1413)

Short Half-lives

	Half - life			
NUCLIDES	Value (s)	Unc. (%)		
⁹⁰ Rb	158	3.17		
^{97m} Y	1.17	2.56		
^{98m} Y	2	10		
⁹⁹ Zr	2.2	4.55		
^{97m} Nb	52.7	3.42		
¹⁰⁰ Nb	1.5	13.33		
¹⁰¹ Nb	7.1	4.23		
¹⁰² Nb	1.3	15.39		
^{102m} Nb	4.3	9.30		
¹⁰³ Nb	1.5	13.33		
¹⁰² Tc	5.28	2.84		
¹⁰⁴ Mo	60	3.33		
¹⁰⁵ Mo	35.6	4.49		
¹⁰⁷ Mo	3.5	14.29		

CEA | SEPTEMBER 24 - 28, 2012 | PAGE 23

Concentration : Major contributors

Work is done for cooling times greater than 10^5 seconds \rightarrow fewer nuclides contribute to the value and the uncertainty of the decay heat.

DE LA RECHERCHE À L'INDUSTR

RESULTS

Cooling time Ratio of the impact of parameters to the uncertainty of the concentration of the nuclides (%)								
		1.	³² I					
	Y ⁱ (¹³²	Ге)	58	.69				
5,0.10 ⁵	Y ⁱ (¹³² Sb)		21.27					
	Y ⁱ (^{132m} Sb)		11.56					
	Y ⁱ (¹³² Sn)		8.2		Nuc	lidos	Ind. Fiss.	δVi (%)
		140	La			inde3	Yield	01 (70)
2 0 106	Y ⁱ (¹⁴⁰ Cs)		82.3		90	⁰Kr	4.50E-02	8.13
2,0.10	Y ⁱ (¹⁴⁰ Xe)		14	.26	90r	™Rb	7.17E-03	33.72
	$Y^{i}(^{140}H)$	Ba)	3.	44	91 K r		3 28E-02	15 34
	⁹¹ Y		95	Zr	91			04.07
1 0 107	Y ⁱ (⁹¹ Kr)	50.55	$Y^{i}(^{95}Sr)$	57.18		RD	2.23E-02	21.97
1,0.10	$Y^{i}(^{91}Rb)$	47.96	Y ⁱ (⁹⁵ Y)	34.17	9	⁵Sr	4.67E-02	10.03
	$Y^{i}(^{91}Sr)$	1.12	Y ⁱ (⁹⁵ Rb)	8.61	9	⁹⁵ Y	1.18E-02	30.55
	⁹⁵ Nb			132	^m Sb	9.02E-03	18.00	
1.5.107	Y ⁱ (⁹⁵ Sr)		57.18		13	² Sb	1 22E-02	18 00
_,	Y ¹ (⁹⁵ Y)		34	34.17		2Te	1.615.02	22.70
	Y ⁱ (⁹⁵ Rb)		8.61			-16	1.61E-02	22.70
		144	⁴ Pr		14	⁰Cs	2.11E-02	23.68
5,5.107	$Y^{i}(^{144}I)$	La)	92	2.8	14	⁴ La	8.09E-03	32.14
	Y ⁱ (¹⁴⁴ Ba)		6.9		13	⁷ Xe	2.73E-02	19.21
	⁹⁰ Y	-	137n	ⁿ Ba				
3.0.10 ⁸	$Y^{i}(^{90}Kr)$	64.72	Y ⁱ (¹³⁷ Xe)	82.61				
.,	$Y^{i}(^{90m}Rb)$	28.24	Y ⁱ (¹³⁷ I)	17.03				
ſ	$Y^{i}(^{90}Br)$	6.46				TEMRE	2 24 - 28 2012	

CONCLUSION

Conclusion

- Lots of results (sensitivity, correlation, uncertainty),
- It is possible to see the propagation of the uncertainties,
- Validity of a determinist code / Stochastic code,
- Major contributors to the decay heat uncertainty are listed.

Prospects

- Options to be added (Use cumulative fission yields (Y^c) during irradiation when it is possible),
- Check the impact of neutronics for the propagation during irradiation.

Commissariat à l'énergie atomique et aux énergies alternativesDENCentre de Cadarache | 13108 St Paul-lès-Durance CedexDERT. +33 (0)4 42 25 31 30 | F. +33 (0)4 42 25 48 49SPRC

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

History

- Decay Heat (DH) : Heat produced by radioactivity (after irradiation)
- Discovery
 - First discovered by P. CURIE, A. LABORDE (1903) in radium salts,
 - Theoretical explanation by E. RUTHERFORD and F. SODDY (1904),

 Related by G.E.M JAUNCEY (1946) Am. J. Phys. The Early Years of Dedicactivity.

Radioactivity

Characterization (Plutonium Project)
Build a reactor to produce plutonium → safety
Burst Fission Curves
BORST, BRADY, DAY & CANNON (1942 – 1943)

METHODOLOGY

Characterization of a parameter

- Nuclear data are measured or calculated from measurements
 - \rightarrow Measurement fluctuations are often normally distributed
 - \rightarrow Nuclear data are normally distributed

From the normal distribution, it is easy to link the confidence interval to the standard deviation.

Libraries : parameter = mean value + standard deviation

 $p = p^0 + \delta p$

Propagation of the variance of nuclear data

Link between the variance of the DH and the variance of the parameters : the error propagation formula

$$\operatorname{var}(PR) = \sum_{i=1}^{n} (S_{DH/p_i})^2 \operatorname{var}(p_i)$$

+
$$\sum_{i=1}^{n} \sum_{k=1,k=i}^{n} S_{DH/p_i} S_{DH/p_k} \sqrt{\operatorname{var}(p_i)} \sqrt{\operatorname{var}(p_k)} \operatorname{corr}(p_i, p_k)$$

Calculation Libraries

1st order formula DH is normally distributed

Ok (PhD thesis)

DE LA RECHERCHE À L'INDUSTRI

- Nuclear data : JEFF3.1.1
- No correlation

RESULTS

- Ok for λ and E
- -? For Yⁱ

DE LA RECHERCHE À L'INDUSTRIE

Possible discrepancy in the case of a use of cumulative fission yields

Comparison : Probabilistic - determinist

DE LA RECHERCHE À L'INDUSTRIE

RESULTS

