

Fission fragment characterization with FALSTAFF at NFS

D. Doré ¹⁾, F. Farget ²⁾, F.-R. Lecolley ³⁾, X. Ledoux ^{4,2)}, G. Lehaut ³⁾, Th. Materna ¹⁾, J. Pancin ²⁾, S. Panebianco¹⁾,

and the FALSTAFF and NFS Collaborations

1) CEA/DSM/Irfu/SPhN, Saclay, France
2) GANIL, Caen, France
3) LPC, Caen, France
4) CEA/DAM/DIF, F-91297, Arpajon, France

Outline NFS facility Motivations for fission studies FALSTAFF Description Simulations SED performances Conclusion

D. Doré, SPhN/Irfu/DSM/CEA

WONDER Workshop, Sept. 2012

SPIRAL2 ... under construction

NFS Collaboration

Spokesperson : X. Ledoux (~20 institutes, 60 physicists)

/SPIRAL1/SPIRAL2 facility layout

GANIL/SPIRAL 1 today

SP2 Beam time: 44 weeks/y ISOL RIB Beams: 28-33

NFS technical issues :

- White and quasi-monokinetic spectra in the 1-40 MeV range
- Neutron beams with high flux and good energy resolution
- Complementary to the existing n-tof facilities
- Measurements by activation reactions (n, p, d)

M. Lewitowicz 9/02/09

Neutron converter

CEA/DSM/Irfu

Be converter for neutron production

Extraction and handling systems

NFS optimization

15

WONDER Workshop, Sept. 2012

NFS Installation

UPPSALA

MoU for NFS construction, signed the 26th of January 2012

- GANIL, Caen, France
- CEA/DAM/DIF, Arpajon, France
- CEA/DSM/Irfu, Saclay, France
- IN₂P₂, France
- CEA/DEN, Cadarache, France
- NPI, Řež, Czech Republic
- Uppsala University, Uppsala, Sweden
- KIT, Karlsruhe, Germany

LOI : Neutron induced reaction studies (4) Fission studies (3) *Cross section meas. by activation (2)* Biology (1) Detector development (1)

Capital investment : 523 k€ Human resources : 350 person-month Total investment : 3185 k€

> PLANNING NFS installation : end-2013 1st Beam : mid-2014

D. Doré, SPhN/Irfu/DSM/CEA

WONDER Workshop, Sept. 2012

Motivations for fission studies

Improvement of models (microscopic / phenomenological)

Libraries

Study of the fission mechanism

TKE → Energy sharing *TKE* vs E_n → intrinsic/collective exc *A* and *Z* yields. → shell effects *Neutron mult* → *Exc. Ene. sharing, deform.* Provide nuclear data needed for applications (GEN IV, SPIRAL2)

A and Z dist. \rightarrow poisons, DN precursors, decay heat Energy dependence \rightarrow model adjustment,

FALSTAFF Four Arm cLover for the STudy of Actinide Fission Fragments

FALSTAFF

2V method \rightarrow mass before evaporation EV method \rightarrow mass after evaporation

2V method → TOF measurement good time resolution <150 ps good position resolution ~1.5 mm

EV method → Energy measurement good energy resolution ~1% △E & E meas. (charge id)

Segmented Ionization Chamber

Simulations, End of SED tests

- E: ionization chamber

- TOF : minised + Sed (50 cm)

and Test at Saclay with

- Cf source

FALSTAFF : phases and tests

Nov · Preparation phase : light fragment masses Cf Sed ←TOF → Sed IC Energy

Kaster Harden Ha

Charge, Energy and Final Mass of Light Fragments (comparisons with simulations)

Energy loss measurements forseen

GEANT4 Simulations (1)

Event generation : Geometry (efficiency), Materials (stragglings, energy losses)

In GEANT4 :

- To be verified : energy loss « tables »
- To be improved : angular straggling
- To be implemented : inhomogeneity, charge resolution,

Secondary Electron Detector (SED) Performances

Fast scintillator on a fast PM 12 key electrons 0 V 0 V 12 ky 12 ky

Time signal from anodes at mid-distance (1.6 mm) between the detector window and the cathode.

Position reconstructed from a (68x48) pixelized cathode.

Time resolution σ < 150 ps

New SED prototype with an active surface of 200 x 140 mm²

Position resolution < 3 mm without a magnetic field < 1 mm with a magnetic field

Time resolution tests with a ²⁵²Cf source

D. Doré, SPhN/Irfu/DSM/CEA

SUMMARY/CONCLUSIONS

NFS facility :

→ Building in construction,
→ All components are designed, some of them are under construction
→ Radioprotection and safety issues are solved
→ 1st beam in 2014

FALSTAFF:

→ Project divided in 3 phases to overcome stopping points
→ Simulations are encouraging about the feasibility
→ Detector performances seem OK but have to be checked further
→ Test with one arm in preparation → milestone for the construction
→ Well positioned for D-One experiment (positive SAC recommandation)