Neutron-induced cross sections of actinides via de surrogate reaction method

B. Jurado¹⁾, Q. Ducasse¹⁾, M. Aiche¹⁾, L. Mathieu¹⁾, T.Tornyi²⁾, A. Goergen²⁾, J. N. Wilson³⁾, G. Boutoux ⁵⁾, I. Companis¹⁾, S. Czajkowski¹⁾, F. Giacoppo²⁾, F. Gunsing³⁾, M. Guttormsen²⁾,
A. C. Larsen²⁾, M. Lebois⁴⁾, J. Matarranz¹⁾, V. Méot ⁵⁾, T. Renstrom²⁾,
O. Roig⁵⁾, S. Rose²⁾, O. Serot⁶⁾, S. Siem²⁾, I. Tsekhanovich¹⁾, G. M. Tveten²⁾, T. Wiborg-Hagen²⁾, M. Wiedeking⁷⁾

1)CENBG, Bordeaux, France
 2)University of Oslo, Norway
 3)IPN, Orsay, France
 4)CEA/Saclay, Gif-sur-Yvette, France
 5)CEA/DAM, Arpajon, France
 6)CEA/Cadarache, Saint Paul lez Durance, France
 7) iThemba LABS, Somerset West, South Africa

Neutron-induced cross sections of short-lived nuclei in reactor physics

The data are missing (in particular for capture) due to the high radio-toxicity of the targets involved!

Surrogate method and fission cross sections 243Am(3He,4He)242Am Fission cross section /b 241 Am(n,f)CENBG Dabbs et al. JENDL-3.3 & JEFF-3.1 **ENDF/B-VII** 0 2 8 10 6 Neutron Energy /MeV G. Kessedjian, et al., Phys. Lett B 692 (2010) 297 How about radiative capture??

Surrogate method applied to capture in rare-earth region Results for 174Yb(3He,p)176Lu

G. Boutoux, et al., Phys. Lett B 712 (2012) 319 Very important discrepancies!

Why do we obtain such big differences?

Due to the high spin of the decaying nucleus, neutron emission to the ground- and first excited states is highly improbable and gamma emission is highly enhanced! Things should get better when the level density of the nucleus after neutron emission increases --> better for actinides

Surrogate method applied to capture in actinide region Experiment at the Oslo cyclotron: Reactions studied

Good quality neutron-induced data exist! (d,p) interesting for inverse kinematics

Good quality neutron-induced data exist

Experimental set-up at the Oslo cyclotron

Simultaneous measurement of gamma and fission decay

Determination of decay probability

First preliminary results: Fission

First very preliminary results: Fission (Analysis with very low statistics, only 1 telescope strip!)

First very preliminary results: Fission (Analysis with very low statistics, only 1 telescope strip!)

First very preliminary results: gamma decay

This ratio needs to be corrected for the gamma-cascade detection efficiency to get Pgamma!

Conclusions...

•Surrogate-reaction method :

-->works well for fission

-->important discrepancies for capture in rare-earth region due to spin selectivity of neutron emission

•New experiment to study capture in actinide region at the Oslo cyclotron \rightarrow d+238U & 3He+238U

- →238U(d,p): fission cross section 25% lower than 238U(n,f), d breakup!
 →Preliminary fission probabilities from 238U(3He,4He) & 238U(3He,t) agree well with n-induced data
- \rightarrow Analysis on the way to extract gamma-decay probabilities

...Perspectives

•Further study of d-breakup involving theoreticians

```
•Gamma-decay probabilities to be extracted for:

238U(d,p)239U <-> 238U(n,γ)

238U(d,t)237U <-> 236U(n, γ)

238U(3He, 4He) 237U <-> 236U(n, γ)

238U(3He, t) 238Np <-> 237Np(n, γ)
```

•Evaluate to which extent the surrogate method can be used to extract unknown capture cross sections of short-lived actinides