

saclay

Neutron transmission and capture measurements for ²⁴¹Am at GELINA

C. Lampoudis, S. Kopecky, A. Plompen, C. Sage P. Schillebeeckx, R. Wynants, O. Bouland, G. Noguere and F. Gunsing

3rd International Workshop on Nuclear Data Evaluation for Reactor applications September 2012, Aix-en-Provence, France

saclay

Motivation

existing data

GELINA facility

linac

experimental setup - sample

Measurements

analysis and results

Summary

Outline

œ

saclay

Nuclear waste management:

Motivation

a major pressing and potentially costly environmental problem

Main components of waste from nuclear reactors

Component	Isotope	${\rm Half\text{-}life}({\rm years})$	Quantity(kg/year)
Fission Fragments	^{135}Cs	$2.3 imes 10^6$	400
(39 ton/year)	$^{99}\mathrm{Tc}$	$2.1 imes 10^5$	1000
	$^{93}\mathrm{Zr}$	$1.5 imes 10^6$	900
	^{129}I	$1.0 imes10^7$	200
	$^{107}\mathrm{Pd}$	$6.5 imes10^6$	250
Plutonioum	²³⁸ Pu	88	190
(11.4 ton/year)	²³⁹ Pu	$2.4 imes 10^4$	6500
($^{240}P_{11}$	6.5×10^{3}	2500
Minor Actinides	$^{237}\mathrm{Np}$	$2.1 imes 10^6$	480
(1.1 ton/year)	$^{241}\mathrm{Am}$	430	250
	^{243}Am	$7.4 imes 10^3$	140
	$^{245}\mathrm{Cm}$	8.5 imes 1 - 3	1

Long term radiotoxicity and high volume makes geo-disposal not an optimum solution

 (\square)

saclay

Transmission

- Derrien and Lucas

- Saclay, LINAC (17 m and 53 m)
- AmO₂ (4.5 10⁻⁴, 1.6 10⁻⁴, 4.7 10⁻⁴ at/b)
- ¹⁰B(n,α₁), 478 keV with Nal

-Kalebin et al.

- Chopper,
- AmO₂ (3.3 10⁻³ and 6.3 10⁻³ at/b)
- Collimation ~0.8 and 0.4 mm
- BF₃ proportional counters

Capture

- Weston and Todd NSE 61 (1976) 356

- ORELA (20 m and 85 m)
- 1.1 10⁻⁴ at/b ²⁴¹Am, AmO₂ + S powder
- Total energy + WF (C_6F_6)
- E_d > 500 keV
- Normalized at $E_n = 0.0253 \text{ eV}$ $\sigma_{\gamma}^{\text{th}} = 582 \text{ b}$
- Jandel et al. PRC 78 (2008) 034609
 - LANSCE (20 m)
 - 1.7 10⁻⁶ at/b ²⁴¹Am (electroplated on Ti)
 - Total absorption (4π)
 - $M_{\gamma} = 4$ and $3.75 < E_{\gamma}^{tot} < 5.4 \text{ MeV}$ $\varepsilon_{n,\gamma} = 12.5 \pm 1.0 \%$
 - Normalization at 4.9 eV of ¹⁹⁷Au(n,γ)

$$\Rightarrow \sigma_{\gamma}^{th}$$
 = 665 ±33 b

Literature data

 \Rightarrow A_v \approx g Γ_n for E_r = 0.306 eV, 0.574 eV and 1.272 eV

- ⇒ Transmission: verify normalization of capture data of Jandel et al. and Weston and Todd
- ⇒ Capture to verify the thermal point and extend the energy range Homogeneous well characterized sample is required

GELINA facility

irfu

saclay

GELINA: dedicated to

- $\forall \sigma(n, tot)$
- $\forall \sigma(n,f), \sigma(n,p), \dots$
- ∀ **σ(n**,γ)

Time-Of-Flight facility Pulsed white neutron source $(10 \text{ meV} < E_n < 20 \text{ MeV})$ Multi-user facility with 10 flight paths (10 m - 400 m)The measurement stations have equipment to perform:

Total cross section measurements Partial cross section measurements

 Pulse width
 : 1ns

 Frequency
 : 50 - 800 Hz

 Average current
 : 4.7 - 75 μ A

 Neutron intensity
 : 1.6 10¹² - 2.5 10¹³ n/s

coolov

- e⁻ accelerated to $E_{e-max} \approx 140$ MeV
- (e^{-} , γ) Bremsstrahlung in U-target (rotating & cooled with liquid Hg)
- $(\gamma, n), (\gamma, f)$ in U-target
- Low energy neutrons by water moderator in Be-canning

œ

saclay

Sample

- AmO₂ in Y₂O₃ matrix (homogeneous)
- Purification to reduce ²³⁷Np
- 40 GBq of ²⁴¹Am
 - 324.5 mg by γ spectroscopy324.6 mg by calorimetry
- Ø = 22.14 mm
 - verified by γ radiography combined with non-contact electronic microscope

• Transmisson at 25 m – ⁶Li-scintillators

- Capture at 12.8 m
 - Total energy detection
 - C₆D₆ detectors + WF
 - Normalization
 - Internal : Γ_n from transmission
 - External : 4.9 eV ¹⁹⁷Au+n

TOF - experiments at GELINA

Experimental conditions

irfu

Capture and transmission

 \Rightarrow **g** Γ_{n}

Doppler broadening dominates the observed width for E_r > 1 eV

Only for low energy resonances Γ can be determined from shape analysis

œ

saclay

Measurement	Flight path	Frequency	Filters		
			Overlap	Fixed background	Additional background
Transmission	25 m	50 Hz 50 Hz 800 Hz	¹⁰ B	Co, Bi, Na Co, Bi, Na, Pb Na, Pb	Ag, Cd Ag, Cd Au, W, Co, Mn
Capture	12.5 m	<mark>50 Hz</mark> 400 Hz 800 Hz	Cd ¹⁰ B	Co, Bi, Na Bi, Na Na, S, Pb	Cd, Ag, W Ag, W Ag, W, Co

	Region	Overlap	Fixed background filters
50 Hz	< 100 eV	_	Co, Bi, Na
400 Hz	> 1 eV	Cd	Bi, Na
800 Hz	> 20 eV	¹⁰ B	Na, S

$$T_{\rm exp} = \frac{C_{in} - B_{in}}{C_{out} - B_{out}}$$

 E_{r} = 6.6735 \pm 0.0030 eV of $^{238}\text{U+n}$ L = 26.444 \pm 0.006 m

Christos Lampoudis, CEA/Saclay

saclav

L = 12.8 m

Total energy detection

- C₆D₆ liquid scintillators
 - 125°
 - PHWT
- Flux measurements (IC)
 - ${}^{10}B(n,\alpha)$

$$Y_{exp} = N \frac{C'_{w} - B'_{w}}{C' - B'} Y$$

$$N \frac{C_{w} - B_{w}}{C' - B'}\sigma$$

Borella et al., NIMA 577(2007) 626

WF: from MC simulations $\int R(E_d, E_{\gamma}) WF(E_d) dE_d = kE_{\gamma}$ $C_w(T_n) = \int C_c(T_n, E_d) WF(E_d) dE_d$

Christos Lampoudis, CEA/Saclay

Christos Lampoudis, CEA/Saclay

Capture and Transmission

saclay

÷ A

²⁴¹Am

Transmission and capture data are consistent Characterisation of sample:

✓ Content by calorimetry at JRC/ITU

Area by radiography at IRMM

```
\int_{th} obtained
```

```
RP (E, g\Gamma_{n,}, < \Gamma_{\gamma}>) up to ~ 200 eV
```

Publication to be submitted within October 2012