

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

# Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Institut de Physique Nucleaire, Orsay; Facultad de fisica, Universidade de Santiago de Compostela, Spain

25-28 Septembre, 2012, Aix-en-Provence



## Neptunium 237

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

#### Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

- 1 Abundant waste produced in present thermal nuclear reactors.
- **2**  $T_{1/2} = 2$  My.
- **3** Candidate for incineration in fast neutron reactors.
- 4 Burning <sup>237</sup>Np needs a better knowledge of neutronic properties (neutron cross sections(XS)).

#### Motivation



L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

#### Introduction

Verification o Cross Section Experiment Simulation IPNO

Inelastic cross





Figure : Ref: C. Paradela et al, Phys. Rev. C82 (2010), 034601. Although most of the measurements are in agreement with each others, the last data obtained at the CERN  $n_{-}$ TOF facility are about 5% to 6% higher than the others beyond 1 MeV.



## <sup>237</sup>Np status

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

#### Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

However! Several previous measurements are not independent.

ENDF-B7.0 based on Tovesson measurement(2008).

- 2 Tovesson's one normalised to ENDF-B6.8 at 14 MeV.
- **3** ENDF-B6.8 based on Lisowski's measurement(1988).
- Lisowski normalized to Meadows (1983) between 1 and 10 MeV
- n\_TOF measurement consistent with data at 14 MeV within the experimental uncertainty of 4%
  Verification of <sup>237</sup>Np cross section is necessary



## Verification of <sup>237</sup>Np Cross Section

- Criticality experiments and benchmarks for validation of cross sections: the neptunium case
- L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification o Cross Sectior

Experiment Simulation

Inelastic cross



- <sup>237</sup>Np+<sup>235</sup>U Sphere critical model is critical experiment measurement performed in Los Alamos and proposed as a benchmark for neutron transport simulations
   <sup>235</sup>U retains 86% of the mass, criticality is still sensitive to fission of <sup>237</sup>Np. (0.3% uncertainty)
- 3  $K_{eff} = 1.0019 \pm 0.0036$  (experimental value)



## Los Alamos Experiment

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification o Cross Section

Experiment

Simulation IPNO

Inelastic cross



Figure : a neutron source inside Np, ( $K_{eff}$ : Mutiplicatif factor)  $N = 1 + K_{eff} + K_{eff}^2 + K_{eff}^3 + ... = \frac{1}{1 - K_{eff}}; N_d = \frac{\epsilon}{1 - K_{eff}}$ Final result:  $K_{eff} = 1.0019 \pm 0.0036$ 



## Simulation with MCNP5/MURE

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification o Cross Section Experiment Simulation IPNO

Inelastic cross



#### Our work:

- Compute the same Benchmark with same conditions. ( $K_{eff} = 0.9942 \; (\exp 2\sigma)$ )
- Substitute nTOF Np XS in place of the evaluated data ENDF/B-7.0's one.
  - Result: criticality increased  $K_{eff} = 1.0043 \ (\exp+0.8\sigma)$ .

<sup>237</sup>Np fission XS could be higher than previous measurements.



L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

## <sup>235</sup>U inelastic cross section



### Inelastic cross section

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO



2,0 <sup>237</sup>Np 1,5 σ<sub>f</sub> (barn) <sup>235</sup>11 1,0 0,5 reduced inelastic flux original inelastic 0,0  $E_n (MeV)$ 3 4



## Criticality distribution the generated configurations

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan Random variation of XS for excitation of the <sup>235</sup>U levels. Criticality of <sup>235</sup>U sphere benchmark should remain invariant: (selection among the generated XS configurations)





L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification o Cross Section Experiment Simulation IPNO

Inelastic cross



Figure : Criticality according to the continuum reduction

- Continuum (MT=91), bears most of the effect on criticality.
- Variation of criticality by the modification of MT=91, to get closer to the experimental value



L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

# Is 40% reduction of the continuum inelastic compatible with existed measurements (Knitter and Batchelor)?





Verification of Cross Section Experiment Simulation IPNO

Figure : Comparison between experimental inelastic cross section measured for <sup>235</sup>U and ENDF/B-7.0, versus the outgoing neutron energy.





Inelastic cross



L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

The  $^{237}$ Np criticality experiment seems to support the n\_TOF data. Now, we compare the  $^{237}$ Np fission rate under different neutron fields.



## Reaction Rate: GODIVA, MASURCA

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification o Cross Section Experiment Simulation IPNO

Inelastic cross



Table : The Experimental measurement lies between  $n\_TOF$  and ENDF/B-7.0 data for GODIVA. However, ENDF/B-7.0 seems to be more consistent with MASURCA reaction rate.



# Neutron spectrum from <sup>252</sup>Cf

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

Calculated spectrum-averaged cross section is compared to measured integral benchmarks in  $^{252}Cf$  spontaneous fission neutron field.  $<\sigma>=\frac{\int W(E)\sigma(E)dE}{\int W(E)dE}$ 

|                           | $calc < \sigma > (b)$ | $\exp < \sigma > (b)$ |
|---------------------------|-----------------------|-----------------------|
| $^{235}U(n, f)$           | 1.225                 | $1.21\pm0.014$        |
| <sup>237</sup> Np(ENDFB7) | 1.357                 | $1.361\pm0.022$       |
| <sup>237</sup> Np(n_TOF)  | 1.431                 | $1.361\pm0.022$       |

The table shows that  $n_{-}TOF$  fission cross section is 5% higher than the experimental value.



### Conclusion

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

- We used the <sup>237</sup>Np critical benchmark to test the validity of the <sup>237</sup>Np fission cross section
- 2 The Keff predicted using the n\_TOF cross section, slightly exceeds the experimental value, it is much closer to the benchmark value
- (n,n') cross section in <sup>235</sup>U doesn't explain the discrepancy. because the -40% configuration is strongly discrepant with experimental data.
- 4 the discrepancy can't be ascribed to the  $^{237}{\rm Np}~\bar{\nu}$
- **5** Integral fission rate experiments do not agree completely with n\_TOF experiment data
- 6 New measurements for confirmation of  $^{237}{\rm Np}$  fission cross section are desired. .



| Criticality<br>experiments<br>and<br>benchmarks<br>for validation<br>of cross<br>sections: the<br>neptunium<br>case                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| L.S.Leong,<br>L. Tassan-Got,<br>L. Audouin, C.<br>Paradela,<br>J.Wilson, D.<br>Tarrio, B.<br>Berthier, I.<br>Duran, C. Le<br>Naour, C.<br>Stephan |
|                                                                                                                                                   |

Cross Section Experiment Simulation IPNO

Inelastic cross

#### THANK YOU!



ANNEXE

 $10^{-1}$ 

Criticality experiments and benchmarks for validation of cross sections: the neptunium case

L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan dP/dE (MeV<sup>-1</sup>) Incident energy Continuum contribution  $(n,n'_{cont})$ 10<sup>-3</sup> 1.0 1.5 E<sub>n'</sub> (MeV) 0.5 2.0 2.5

Discrete levels

 $(n,n'_1)-(n,n'_{40})$ 

Cross Sectio Experiment Simulation

Inelastic cross



L.S.Leong, L.Tassan-Got, L.Audouin, C. Paradela, J.Wilson, D. Tarrio, B. Berthier, I. Duran, C. Le Naour, C. Stephan

Introduction

Verification of Cross Section Experiment Simulation IPNO

Inelastic cross

| $E_{n}-E_{n'}$ | E <sub>n</sub> =1.9 MeV                          |          | E <sub>n</sub> =2.3 MeV                                    |          |
|----------------|--------------------------------------------------|----------|------------------------------------------------------------|----------|
| (MeV)          | Exp                                              | ENDF/B-7 | Exp                                                        | ENDF/B-7 |
|                | $\sigma_{\it inel} \pm \Delta \sigma_{\it inel}$ |          | $\sigma_{\textit{inel}} \pm \Delta \sigma_{\textit{inel}}$ |          |
| 0.5 - 0.7      | $0.046 \pm 0.022$                                | 0.087    | $0.008 \pm 0.022$                                          | 0.048    |
| 0.7 - 0.9      | $0.113 {\pm} 0.022$                              | 0.147    | $0.024{\pm}0.022$                                          | 0.078    |
| 0.9 - 1.1      | $0.213 {\pm} 0.022$                              | 0.205    | $0.052{\pm}0.022$                                          | 0.115    |
| 1.1 - 1.3      | $0.294{\pm}0.022$                                | 0.290    | $0.086 {\pm} 0.022$                                        | 0.178    |
| 1.3 - 1.5      | 0.267±0.022                                      | 0.320    | $0.155{\pm}0.022$                                          | 0.207    |
| 1.5 - 1.7      |                                                  |          | 0.277±0.022                                                | 0.264    |
| 1.7 - 1.9      |                                                  |          | $0.322 \pm 0.022$                                          | 0.319    |