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In a mean field approximation (even in the HF) 

the two-body collisions are incorporated in the 

equations of motion only to the extend to which 

they contribute to the mean field. In principle, 

the time dependent equations of motion treats 

the residual interactions exactly only if the mean 

field is allowed to break all symmetries. Such 

approaches lead to huge computational 

problems. Usually, the mean field is constrained 

to be at least axially symmetric. In this case, 

levels characterized by the same good quantum 

numbers cannot intersect, each individual wave 

function will belong to only one orbital, and the 

mechanism of level slippage is not allowed. 

THE TIME DEPENDENT PAIRING 

EQUATIONS 



This behaviour leads to the unpleasant feature 

that a system even moving infinitely slowly 

could not end up in its ground state. 

Solutions for the problem: for ex. in the HF 

approximation the equations of motion were 

extended to include collision terms (Stochastic 

time dependent approaches). 

Inclusion of the pairing interaction: time 

dependent pairing equations (formally similar to 

the TDHFB) in the 1980’s. (Schutte and Wilets, 

Z.Phys.A 280, 313, 1978; Koonin and Nix, PRC 

13, 209,1976; Blocki and Flocard, NPA 273, 45, 

1976). 

An average value of the dissipation energy can 

be computed from the time dependent pairing 

equations. 



DISSIPATION 
The coupling of collective degrees of freedom with the 
microscopic ones causes dissipation and a modification of 
the adiabatic potential. The term dissipation usually refers 
to exchange of energy (either linear or angular 
momentum) by all kind of damping from collective motion 
to intrinsic heat. A measure of the dissipated energy can 
be obtained solving the time dependent pairing equations 
(that are similar to the Hartree-Fock-Bogoliubov ones): 



DEFINITION OF DISSIPATION 

Energy with densities and pairing moment 

components obtained from the equations of 

motion - Lower energy state (BCS 

solutions): 
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Where ρ are single particle densities and κ 

pairing moment components 



Dissipation along the minimal 
action trajectory for different 
tunneling velocities velocities for 
the fission of 236U in the partition 
86Se+150Ce. 

The dissipation after the scission 
tends to increase when the 
tunneling velocity increases. 

The dissipation increases 
especially  in the final part of the 
process (when the second 
barrier is tunneled) 

M. Mirea and al., NPA 735, 21 (2004). 



A deep connection with the Landau-Zener 

transitions is included in the time dependent 

pairing equations: pairs undergo Landau-

Zener transitions on virtual levels with 

coupling strengths given by the magnitude of 

the gap . 



The number of nucleons N in the active level space before scission 

must be equal with the sum of numbers of nucleons N1+N2 in the 

two fragments in the same active level space. But the sum of BCS 

occupation probabilities of the levels of one fragment is not equal 

with its expected number of nucleons. 

N0=N1+N2 

Σρk0=N0       but              Σρk1≠N1               Σρk2≠N2  

 

 N1 and N2 are not integers. 

TIME DEPENDENT PAIRING EQUATIONS 

WITH PROJECTION OF NUMBER OF  

PARTICLES 

N1 
N2 



FORMALISM FOR ENERGY PARTITION IN 

NUCLEAR FRAGMENTS 

 
The partition of dissipation energy between 

fragments can be evaluated with conditions that 

project the number of particles in each fragment. 

 In order to obtain the equations of motion we start 

from the variational principle taking the following 

energy functional as: 

The trial state is a many-body expanded as a BCS 

seniority zero w.f. 

u and v are time dependent occupation and vacancy 

amplitudes, rspectively 



The Hamiltonian with pairing residual interactions is 

A supplementary condition is introduced through the 

Lagrange multiplier λ 

The particle number operators in the pairing active level 

space for the fragments are  

N1 and N2 (integers) are expected number of particles 

of fragments.  



After variation, the equations of motions 

read, eventually 

These equations project the number of particles on the 

two fragments providing that we know where the single 

particle levels will be located before that the scission is 

produced. 



After scission, the pairing G12 matrix element between 

states belonging to the different fragments is zero. 

When G12=0, the flux of the single particle density from 

one fragment to another is forbidden. The number of 

particles in the two fragments are conserved. 



The whole nuclear 

system is characterized by  

some collective variables  

which determine 
approximately 

the behavior of all other 

intrinsic variables.  

MACROSCOPIC-MICROSCOPIC MODEL 



Nuclear shape parametrization 

Most important degrees of 
freedom encountered in 
fission: 

-elongation R=Z2-Z1 

-necking-in C=s/R3 

-mass-asymmetry  a1/a2 

-fragments deformations 

(a) Diamond-like (swollen) shapes 

(b) Necked shapes 



Minimal values of the deformation energy in MeV as function of the neck 

coordinate C and the elongation R for 234U. (b) Contours of the deformation energy. 

The lest action trajectory is superimposed. 

MINIMIZATION OF THE ACTION INTEGRAL AND 

FISSION TRAJECTORY 

P=exp{-(1/ħ)∫[2B(E-E0)]
1/2 dR}        WKB integral 

E(R,C,R2)=potential energy (microscopic-macroscopic model) 

E0=ground-state energy 

B(R,C,R2,dC/dR,dR2/dR)=inertial mass along the trajectory (cranking model) 

The functional P (from ground-state to exit point from  the barrier) must be minimized in a 
configuration spacespanned by R,C,R2.  Optimum fission path in space. 



Woods-Saxon mean field potential within the two 

center parametrization 



THE TWO CENTER MODEL 

),,(),,(),(),(),(
2

0

2

 zEzzVzVzV
m

cLs 











Orthogonal functions in 

ONE Hilbert space 



DISENTANGLEMENT OF ASYMPTOTIC  

WAVE FUNCTIONS 



EXAMPLE OF SINGLE PARTICLE LEVEL 

SCHEME  

Solve a Woods-Saxon potential within the two-center semisymmetric eigenvector 

basis.  



ENERGY PARTITION IN THE FISSION OF 234U  

WITH 132Sn AS HEAVY FRAGMENT 

The previous time dependent equations are used to evaluate 

the energy partition in fission (M. Mirea PRC 83 (2011) 054608, 

PLB doi:10.1016/j.physletb.2012.09.023). This phenomena was 

recently investigated with a wide range of models: 

- statistical K-H Schmidt and B Jurado PRL 104 (2010) 212501; 

PRC 83 (2011) 014607 

- phenomenological C Morariu, A Tudora, F J Hambsh, S 

Oberstedt and C Manailescu, JPG 39 (2012) 055103 

- empirical C Yong-Jing, et al. IJMPE 21 (2012) 1250073 

- Hartree-Fock W Younes and D Gogny, PRL (2011) 132501 

- single particle in sudden approximation N Carjan, F J 

Hambsch, M Rizea and O Serot, PRC 85 (2012) 044601 



Calculation of the dissipated energy in the 

reaction 234U -> 102Zr+132Te 



The levels of the heavy fragment can be identified 

before that the scission is produced 

Neutron single particle 

energies 
Proton single particle 

energies 



Dissipation energy as 

function of the distance 

between the centers of 

the fragments for three 

different values of the 

internuclear velocity: 

104, 105, and 106 fm/fs 

(no projection 

condition). 

 



Dissipation energy for 

neutrons as function of 

the distance between 

the centers of the 

fragments for the 

internuclear velocity 

106 fm/fs (projection 

condition). 

 

Number of neutron 

pairs that are 

considered  to be 

located in the two 

fragments.  

 



Dissipation energy of 

the fragments as 

function of  the 

internuclear velocity. 

 

For dR/dt=106 fm/fs: 

Heavy fragments Te 

E*=5 MeV 

Light fragments Zr 

E*=12 MeV 

 

 



Wide range in the mass distribution 

 

 
66,68,70,72Ni, 74,76Zn, 78,80Ge, 82,84,86Se, 88,90,92Kr, 
94,96Sr, 98,100,102Zr, 104,106,108Mo, 110,112Ru, 
114,116,118,120Pd, 122,124Cd, 126,128,130Sn, 132,134,136Te, 
138,140Xe, 142,144,146Ba, 148,150,152Ce, 154,156Nd, 
158,160Sm, 162,164,166,168Gd 

 



Ground state deformations of the fragments 

(eccentricities). 

The difference between the energy of the emerging 

fragments and their ground state deformation energy is 

considered as a collective excitation. . 



The potential energy and the semi-adiabatic cranking 

inertia as function of the light fragment mass 



Normalized yield as function of the mass number  



K. Nishio and al., J. Sci. Tech. 35 (1998) 631 

Dissipated energy, collective 

excitation, total excitation of the 

fragments  as function of their 

mass numbers 



It is a first microscopic description of the energy partition in a wide  

range of fission channels that succeed to reproduce the main behavior 

of the neutron multiplicities. Concluding, it is important to stress that the  

internal energy at scission is not a free energy which may be distributed  

in any way between the two fragments. The energy flow depends on the 

shapes at scission. The shapes at scission are directed by a dynamical  

trajectory. This trajectory depends on the internal structure of the system 

through the shell effects. Once the scission is obtained, the nucleons 

must be distributed onto the microscopic levels of the two fragments.  

The internal excitation is produced by this rearrangement of nucleons.  

But in the same time, the single particle energies distribution depends  

on the deformations of the fragments. Therefore, an subtle interplay  

exists in permanence between the intrinsic energy and the excitation  

energy due to deformations. A shift of the final deformations from the  

best configuration not only produces collective excitations, but also 

a variation of the dissipated energy. 

RESUME 
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