

Improved MOX fuel calculations using new Pu-239, Am-241 and Pu-240 evaluations

Wonder 2012 G. Noguere, O. Bouland, D. Bernard, P. Leconte, P. Blaise, Y. Penneliau, J.F. Vidal, C. De Saint Jean, L. Leal, P. Scjilleebeeckx, S. Kopecky, C. Lampoudis, C. Morariu, A. Tudora

www.cea.fr

27 Sept. 2012

- Extensive experimental programs, carried out in the zero-power research reactor EOLE of the CEA Cadarache, were designed to study advanced LWR and BWR core configurations of MOX fuel assemblies.
- The parameter of interest in this work is the residual reactivity.
- New reactivity calculations using the TRIPOLI-4 Monte-Carlo Code with the JEFF-3.1.1 nuclear data library have confirmed the systematic overestimation of the keff.

MH1.2 (EOLE, Cadarache)	PWR-MOx mixed core	4 years
BASALA-Hot (EOLE, Cadarache)	BWR-MOx	12 years
	BWR-MOx	13 years
MISTRAL-2 (EOLE, Cadarache)	PWR-MOx	8 years
MISTRAL-3 (EOLE, Cadarache)	PWR-MOx	9 years
MISTRAL-4 (EOLE, Cadarache)	MOx-REF	10 years
	MOx-AIC	10 years
	MOx-Hf	10 years
	MOx-B4C	10 years
FUBILA-Hot (EOLE, Cadarache)	BWR-REF (EPICURE)	1 years (16-17 years)
	BWR-NORM (EPICURE)	1 years (16-17 years)
	BWR-70% Void (EPICURE)	1 years (16-17 years)
	BWR-10×10 (EPICURE)	1 years (16-17 years)
	BWR-UGD (EPICURE)	1 years (16-17 years)
ERASME (EOLE, Cadarache)	ERASME/R, HCPWR	
	ERASME/S	
OSMOSE (MINERVE, Cadarache)	Oscillation measurements (R1U02 and R1MOX lattices)	
Post Irradiated Experiments (PIE)	GRAVELINE (ALIX-HTC), GUNDREMMINGEN, DAMPIERRE,	

New evaluation of the Resolved Resonance Range (E<150 eV)

IRMM/CEA Collaboration (PhD Thesis C. Sage, sample preparation, ...)
Neutron Resonance Shape Analysis with REFIT/CONRAD
Resonance Parameter Covariance Matrix generated by marginalization

ECIS/TALYS description of the « continuum » (150 eV< E<20 MeV)

Collaboration with the Bucarest University (PhD Thesis C. Morariu)
Collaboration with Los Alamos National Lab. (« head band states »)

Integral benchmarks

MELUSINE (Grenobles)
MINERVE, EOLE, MASURCA (Cadarache)
PHENIX (Marcoule)
Monte Carlo code TRIPOLI-4
Deterministic codes APOLLO-2.8 and ERANOS-2

DER/SPRC/LEPh, Cadarache | 27 Sept. 2012 | PAGE 5

1975

J.W.T. Dabbs, ORELA, 1983

Capture cross section (C6D6) : G. Vanpraet et al. (1985)

Re-normalization of the capture Yield measured by Vanpraet by using the transmission data measured at the IRMM

Capture cross section :

ECIS/TALYS calculations based on the Optical Model Parameters of Soukhovitskii et al, Phys. Rev. C72, 024604 (2005) \Rightarrow see talk of J.M. Quesada Molina

CEA | 10 AVRIL 2012 | PAGE 8

Fission cross section : Dabbs (ORELA, 1983) and Derrien (Saclay, 1975)

CEA | 10 AVRIL 2012 | PAGE 9

Fission cross section : ECIS/TALYS calculations Head-band states based on the work of Olivier Bouland (LANL/CEA collaboration)

Fission Probability : surrogate-reaction method, CENBG See talk of Beatriz Jurado

Am-241 evaluation

ICARE-S program (1986)

Irradiation of two Am-241 samples in MELUSINE (Grenoble, France)

This experiment contained rods with samples of almost pure actinide isotopes separated into small quantities.

The variables of interest for the interpretation of ICARE are the sample composition at the beginning and at the end of the irradiation period (6 months)

The **Integral Data Assimilation** technique implemented in the CONRAD code was used to extract the capture resonance integral from the ICARE-S experiment

 $I_0 (JEFF-311) = 1526 b$ $I_0 (new) = 1825 \pm 65 b$ $I_0 (ICARE-S) = 1895 \pm 90 b$

zero-power research reactor EOLE (Cadarache)

DER/SPRC/LEPh, Cadarache | 27 Sept. 2012 | PAGE 14

New evaluation of the Resolved Resonance Range (E<2.5 keV)

•ORNL/NEA/CEA Collaboration (Luiz Leal) •Neutron Resonance Shape Analysis with SAMMY/CONRAD •Resonance Parameter Covariance Matrix generated by marginalization •Investigation of the (n, γ f) reaction •Phenomenological description of the neutron multiplicity v_p

Description of the « continuum » (2.5 keV< E<30 MeV)

•CEA/Dam of Bruyère-Le-Châtel ⇒ See talk of Yannick Peneliau
 •LANL/CEA Collaboration ⇒ See talk of Olivier Bouland

Integral benchmarks

ICSBEP (Pu-Sol-Therm) and EOLE (Cadarache)
Monte Carlo code TRIPOLI-4
Deterministic code APOLLO-2.8

WPEC/SG34, Co-ordinator : C. De Saint Jean « Coordinated evaluation of Pu-239 in the resonance region » See talk of A.C. (Skip) Kahler

New investigation of the two-step $(n,\gamma f)$ process

- **1959** : unpublished estimation of the $\Gamma_{\gamma f}$ width for the (n, γf) reaction by E. Lynn
- **1965**: On the slow neutron, gamma-fission reaction, E. Lynn, Phys. Lett. 18
- **1967** : Evaluation des données neutroniques pour le Pu-239, G. LeCoq, PhD thesis
- **1973** : Etudes des sections efficaces de réaction des neutrons de resoanance avec Pu239, H. Derrien, PhD thesis
- 1974 : Etude des neutrons et des rayons gamma émis lors de la fission induite dans 235U et 239Pu par neutrons lents: mise en évidence de la réaction (n,gamma f), D. Shackleton, PhD thesis
- **1980** : The double-humped fission barrier, S. Bjornholm and E. Lynn, Rev. Mod. Phys. 52
- **1988** : Evaluation of v_p for Pu-239, E. Fort et al. Nucl. Sci. Eng. 99

The evaluation of the neutron multiplicity v_p takes into account

- •2 openened fission channels for $J^{\pi}=0^+ \Rightarrow \Gamma_{f1}(0^+)$ and $\Gamma_{f2}(0^+) \Rightarrow \Gamma_{f}(0^+)$
- •1 openened fission channels for $J^{\pi}=1^+ \Rightarrow \Gamma_f(1^+)$
- •J-dependent width for the (n, γ f) reaction $\Rightarrow \Gamma_{\gamma f}(0^{+})$ and $\Gamma_{\gamma f}(1^{+})$

Phenomenological description

$$\nu_p(E) \approx \sum_{i=1}^4 \nu_i P_i(E)$$

Where

$$P_i(E) = \frac{\sigma_{fi}(E)}{\sigma_f(E) + \sigma_{\mathcal{H}}(E)}$$

Cea

Pu-239 evaluation

The contribution of the (n, γ f) process can be observed for resonances with J^{π}=1⁺

CEA | 10 AVRIL 2012 | PAGE 21

zero-power research reactor EOLE (Cadarache)

DER/SPRC/LEPh, Cadarache | 27 Sept. 2012 | PAGE 22

zero-power research reactor EOLE (Cadarache)

ICSBEP benchmark results : JEFF-3.11 Vs. ENDF\B-VII

| PAGE 24

ICSBEP benchmark results : JEFF-3.11 Vs. ENDF\B-VII

Pu-239 evaluation

A new evaluation of Pu-240 is in progress (Luiz Leal, ORNL)

The present work can give some recommendations on the radiation width of the first resonance at 1 eV

Author	Reference	Radiation width $\Gamma\gamma$	
O. Bouland	NSE 127, 105 (1997)	29.14 ± 0.6 meV (2%)	
S.F. Mughabghab	Atlas of Neutron Resonances, 2006	29.14 ± 0.6 meV (2%)	
JEFF-3.1.1		29.15 meV	
A. Meister	Private communication	30.50 ± 0.31 meV (1%)	
		30.39 ± 0.13 meV (0.4%)	

Cristal Latice Model

Free Gas Model

Pu-240 evaluation

DER/SPRC/LEPh, Cadarache | 27 Sept. 2012 | PAGE 28

- Significant improvements of the keff results by using the new Am-241 et Pu-239 evaluation
- The remaining overestimation (~200 pcm) could be explained by Pu-240
- New Time Of Flight measurements of the totale cross section of Pu-239 and Pu-240 (77K, 300 K and T>300 K) are needed
- Use of the Cristal Lattice Model for the Neutron Resonance Shape Analysis (phonon spectrum is needed)