SPY: a microscopic statistical scission-point model to predict fission fragment distributions

<u>S. Panebianco¹</u>, N. Dubray², H. Goutte¹, S. Heinrich^{2*}, S. Hilaire², J.-F. Lemaître, J.-L. Sida¹

¹CEA Centre de Saclay, Irfu, 91191 Gif-sur-Yvette, France ²CEA, DAM, DIF, 91297 Arpajon, France * Former member of the laboratory

WONDER 2012 Aix-en-Provence, 25-28 September 2012

Stefano Panebianco - [SPY: a microscopic statistical scission point model]

SPY: a microscopic statistical scission-point model to predict fission fragment distributions

<u>S. Panebianco¹</u>, N. Dubray², H. Goutte¹, S. Heinrich^{2*}, S. Hilaire², J.-F. Lemaître, J.-L. Sida¹

¹CEA Centre de Saclay, Irfu, 91191 Gif-sur-Yvette, France ²CEA, DAM, DIF, 91297 Arpajon, France * Former member of the laboratory

WONDER 2012 Aix-en-Provence, 25-28 September 2012

Stefano Panebianco - [SPY: a microscopic statistical scission point model]

The scission-point model

- First proposed by Wilkins (Wilkins et al., Phys. Rev. C 14 (1976) 5)
- Static approach:
 - Fission process is slow
 - A statistical «quasi»-equilibrium is reached at scission
 - The main fragment characteristics are freezed at this point
 - Dynamics is not explicitly treated
 - The scission configuration is defined by two ellipsoids with an intersurface distance d

sur les lois fondamentales

de l'Univers

The scission-point model

- First proposed by Wilkins (*Wilkins et al, Phys. Rev. C 14 (1976) 5*)
- Static approach
- Based on an energy balance at scission
- Main limitations:
 - Collective and intrinsic temperature parameters (+ d!) fitted on data
 - Energy potentials are relative to the scission point
 - Only prolate deformations
 - Individual energies are not microscopic (liquid drop + Strutinski + pairing)

fondamentales

de l'Univer

 $\begin{aligned} \mathsf{V}(\mathsf{Z}_{1,2},\mathsf{N}_{1,2},\beta_{1,2},\mathsf{d},\tau_{1,2}) &= \Sigma \mathsf{V}_{\mathsf{LD}}{}^{1,2}(\mathsf{Z}^{1,2},\mathsf{N}^{1,2},\beta^{1,2}) + \Sigma \mathsf{V}_{\mathsf{Str.}}{}^{1,2}(\mathsf{Z}^{1,2},\mathsf{N}^{1,2},\beta^{1,2},\tau_{1,2}) \\ &+ \mathsf{V}_{\mathsf{coul}}(\mathsf{Z}_{1,2},\mathsf{N}_{1,2},\beta_{1,2},\mathsf{d}) + \mathsf{V}_{\mathsf{nucl}}(\mathsf{Z}_{1,2},\mathsf{N}_{1,2},\beta_{1,2},\mathsf{d}) \end{aligned}$

$$Z_L, A_L, \beta_L, \tau_{int} \xrightarrow{d} Z_H, A_H, \beta_H, \tau_{int}$$

The SPY model

- A revised version of Wilkins model was developed by S. Heinrich (PhD thesis, 2006) and J.-L. Sida
- Main core of SPY (Scission Point model for fission fragment Yields)
- Based on microscopic ingredients
 - Individual microscopic energies based on HFB calculation with the Gogny D1S interaction (avail. @ Amedee database)
 - No dependence on intrinsic temperature
 - Available energy is calculated as:

$$E_{avail} = E_{tot} - V$$

$$V(Z_{1,2}, N_{1,2}, \beta_{1,2}, d) = \Sigma V_{HFB}^{1,2}(Z^{1,2}, N^{1,2}, \beta^{1,2}) + V_{coul}(Z_{1,2}, N_{1,2}, \beta_{1,2}, d) + V_{nucl}(Z_{1,2}, N_{1,2}, \beta_{1,2}, d)$$

- Coulomb interaction based on Cohen Swiatecki formalism
 Cohen and Swiatecki, Annals of Physics 19 (1962) 67
- Nuclear interaction based on the Blocki proximity potential Blocki et al, Annals of Physics 105 (1977) 427

fondamentales

de l'Univer

SPY into the Hg fission debate...

Andreyev et al., PRL 105 (2011) 252502

β -delayed fission of ¹⁸⁰TI

Surprising asymmetric yields of ¹⁸⁰Hg fission fully attributed to the nuclear structure of the fissioning nucleus

FIG. 4. (Color online) Minima, saddles, major valleys, and ridges in the 5D potential-energy surface of ¹⁸⁰Hg (see text). At the last plotted point on the fission barrier, $(Q_2/b)^{(1/2)} \approx 11$, the asymmetry of the shape is $A_{\rm H}/A_{\rm L} = 108/72$.

Möller et al., PRC 85 (2012) 024306

SPY into the Hg fission debate...

β -delayed fission of ¹⁸⁰TI

Surprising asymmetric yields of ¹⁸⁰Hg fission fully attributed to the nuclear structure of the fissioning nucleus

Möller et al., PRC 85 (2012) 024306

Institut de recherche

de l'Univers

sur les lois fondamentales

Available energy at scission: symmetric fragmentation

rfu

de l'Univers

Institut de recherche

sur les lois fondamentales

Available energy at scission: asymmetric fragmentation

Available energy at scission

¹⁸⁰Hg fission @ E*=10MeV

Institut de recherche sur les lois fondamentales de l'Univers

rfu

Two reference cases

Institut de recherche

de l'Univers

sur les lois fondamentales

On the scission point definition

- The SPY model is "parameter free"
- The distance d is fixed at 5 fm
- The distance is chosen on the exit points selection criteria used on Bruyères microscopic fission calculations

On the choice of the scission distance

Self-consistent HFB of ¹⁸⁰Hg: most probable configuration $(q_{20}=256.12b; q_{30}=33.28b^{3/2})$ d = 5.7 fm

9

- The probability of a given fragmentation is linked to the phase space available at scission
- The phase space is defined by the number of available states of each fragment, i.e. the intrinsic level/state density
- The energy partition at scission is supposed to be equiprobable between each state available to the system (microcanonical system)
- Therefore the phase space is defined as:

$$\pi(N_l,N_h,Z_l,Z_h,\beta_l,\beta_h,A) = \int_{\varepsilon=0}^{\varepsilon=A} \rho_l(\beta_l,\varepsilon) \ \rho_h(\beta_h,A-\varepsilon) \quad d\varepsilon$$

• The relative probability of a given fragment pair is:

$$P(N_l, N_h, Z_l, Z_h) = \int_0^{\beta_{\max}} \int_0^{\beta_{\max}} \pi(\dots, \beta_l, \beta_h, A) d\beta_l d\beta_h$$

The level density ingredient

- Very delicate point of the model...
- In this approach the level densities are a natural counterbalance to a stronger stabilization of spherical deformations and even-even nuclei, which leads to unphysical fragment mass distributions
- For the time being, a Fermi gas approach has been tested
- The CTM effective level density is parameterized as:

Koning et al., Nucl. Phys. A 810 (2008) 13

$$\rho_F(E) = \frac{1}{\sqrt{2\pi}\sigma} \frac{\sqrt{\pi}}{12} \frac{e^{2\sqrt{aE}}}{a^{1/4} E^{5/4}}$$

with $a=\alpha A+\beta A^{2/3}$, α = 0.0692559, β = 0.282769 and σ = $I_0a\sqrt{E/a}$

- A microscopic calculation of level densities has been recently performed (at zero temperature) in the framework of HFB formalism
- Very time consuming since the we need the energy evolution at each deformation for some 1500 nuclei

fondamentales

de l'Univer

From the available energy to the yield

sur les lois fondamentales

de l'Univers

Conclusions and perspectives

- SPY: a scission-point model fully based on microscopic ingredients (beyond Wilkins)
- Work in progress but first results are rather encouraging
- Able to <u>explain the mass asymmetry observed in ¹⁸⁰Hg</u> fission (paper just submitted for publication...)
- The lack of dynamics is visible (width of yields distributions... see B. Jurado talk!) and expected
- Ongoing and future developments (PhD thesis starting):
 - Take into account pre-scission energy into the balance (this can wash out the dependence on d)
 - Integration of the new D1M Gogny interaction
 - Integration of HFB calculation at finite temperature ($E^* \approx T^2$)
 - Microscopic level densities from HFB (intrinsic + collective)
 - Integration of full spin populations
 - Integration in THALYS
 - ...

Backup slides

Irfu Institut de recherche sur les lois fondamentales de l'Univers

1

From the available energy to the yield

Institut de recherche sur les lois fondamentales de l'Univers

Observables: mass and charge yields

de l'Univers

Systematics: mass yields for n-induced fission

Stefano Panebianco - [SPY: a microscopic statistical scission point model]

Institut de recherche sur les lois fondamentales de l'Univers

Systematics: mass yields for spontaneous fission

Institut de recherche sur les lois fondamentales de l'Univers

Systematics: mean TKE

We miss around 10 MeV: prescission energy (d dependence), Coulomb?

Institut de recherche sur les lois fondamentales de l'Univers

rfu

Institut de recherche sur les lois fondamentales de l'Univers

Т

Available energy at scission: asymmetric fragmentation

Available energy at scission: symmetric fragmentation

Institut de recherche

de l'Univers

sur les lois fondamentales

