A Lane consistent optical model potential for nucleon induced reactions on $^{238}\mathrm{U}$ and $^{232}\mathrm{Th}$ nuclei with full coupling

José Manuel Quesada Molina

Department of Atomic, Molecular and Nuclear Physics University of Seville, Spain

WONDER 2012

Aix-en-Provence, September 26, 2012

José Manuel Quesada Molina WONDER 2012

IAEA/NEA studies and recommendations

Content

2 Dispersive Optical Model Potential with Full Lane consistency (Capote, Soukhovitskii, Quesada, Chiba)

- Historical remarks
- Formalism
- New OMP results:

3 Backup slides

< 注→

IAEA/NEA studies and recommendations

OECD/NEA WPEC Subgroup 26 Final Report: "Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations", M Salvatores (coordinator), R. Jacquemin (monitor), Tech. Rep. NEA No. 6410 (2008)

The request for improved cross sections and emission spectra and their accuracies for neutron induced reactions on 238U is an important issue that emerges in several of cases studied. High accuracy requirements were placed on inelastic cross-sections 238U(n,inl) in the whole energy range up to 20 MeV.

+ Benchmark sensitivity to elastic and inelastic cross sections, and corresponding angular distributions \Rightarrow Optical Model

Image: A math a math

IAEA/NEA studies and recommendations

IAEA/NEA studies and recommendations

IAEA International Atomic Energy Agency INDC(NDS)-0597 Distr. J+NM

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

INDC International Nuclear Data Committee

Summary Report

Technical Meeting on

Inelastic Scattering and Capture Cross-section Data of Major Actinides in the Fast Neutron Region

IAEA Headquarters Vienna, Austria 6 – 9 September 2011

Prepared by A.Plompen, T.Kawano, and R.Capote Available at

http://www-nds.iaea.org/publications/indc/indc-nds-0597.pdf

Historical remarks

Content

MotivationIAEA/NEA studies and recommendations

2 Dispersive Optical Model Potential with Full Lane consistency (Capote, Soukhovitskii, Quesada, Chiba)

- Historical remarks
- Formalism
- New OMP results:

3 Backup slides

< A > <

Historical remarks

Dispersive OMPs

- Dispersive OMPs Spherical magic nuclei, ⁴⁰Ca, ⁴⁸Ca, ⁹⁰Zr, ²⁰⁸Pb, ...
 - R. Lipperheide. Z. Phys. 202, 58 (1967); G. Passatore, Nucl. Phys. A95 (1967) 694
 - . R. Lipperheide and A.K. Schmidt, Nucl. Phys. A112 (1968) 65
 - C. Mahaux and co-workers : 1984-
 - . W. Tornow et al (TUNL):1993-
 - A. Molina, R.Capote, J. M. Quesada and M. Lozano, PRC 65 (2002) 034616
- Coupled channels OMPs (Deformed nuclei)
 - A.C. Merchant, P.E. Hodgson and H.R. Schelin. Nucl. Sc. Eng. 111 (1992) 132
 - P. Romain and J.P. Delaroche. Proceedings of the Meeting on Nucleon-Nucleus Optical Model up to 200 MeV, Bruyres-le-Chtel, p.167 (OECD, Paris, 1997)
 - A.B. Smith . Ann. Nucl. Energy 28 (2001); 29 (2002); 31 (2004)
 - E. Sh. Soukhovitskii, R. Capote, J. M. Quesada and S. Chiba Phys. Rev. C 72 (2005) 024604
 - R. Capote, E. Sh. Soukhovitskii, J. M. Quesada and S. Chiba, Phys. Rev. C 72 (2005) 064610
 - J. M. Quesada, R. Capote, E. Sh. Soukhovitskii, S. Chiba, Phys. Rev. C 76 (2007) 057602
 - R. Capote, S. Chiba, E. Sh. Soukhovitskii, J. M. Quesada and E. Bauge, Jou. Nucl. Sci. Tech. 45 (2008) 333-340;
 - o R.Capote et al, "RIPL ..", Nucl. Data Sheets 110 (2009) 3107-3214
 - W. L. Sun, L. J. Hao, E. Sh Soukhovitskii, R. Capote and J. M. Quesada, AIP Conf. Proc.1235 (2010) 43-49

< ∃⇒

Historical remarks

Dispersive OMPs

- Dispersive OMPs Spherical magic nuclei, ⁴⁰Ca, ⁴⁸Ca, ⁹⁰Zr, ²⁰⁸Pb, ..
 - R. Lipperheide. Z. Phys. 202, 58 (1967); G. Passatore, Nucl. Phys. A95 (1967) 694
 - . R. Lipperheide and A.K. Schmidt, Nucl. Phys. A112 (1968) 65
 - C. Mahaux and co-workers : 1984-
 - . W. Tornow et al (TUNL):1993-
 - A. Molina, R.Capote, J. M. Quesada and M. Lozano, PRC 65 (2002) 034616
- Coupled channels OMPs (Deformed nuclei)
 - A.C. Merchant, P.E. Hodgson and H.R. Schelin. Nucl. Sc. Eng. 111 (1992) 132
 - P. Romain and J.P. Delaroche. Proceedings of the Meeting on Nucleon-Nucleus Optical Model up to 200 MeV, Bruyres-le-Chtel, p.167 (OECD, Paris, 1997)
 - A.B. Smith . Ann. Nucl. Energy 28 (2001); 29 (2002); 31 (2004)
 - E. Sh. Soukhovitskii, R. Capote, J. M. Quesada and S. Chiba, Phys. Rev. C 72 (2005) 024604
 - R. Capote, E. Sh. Soukhovitskii, J. M. Quesada and S. Chiba, Phys. Rev. C 72 (2005) 064610
 - J. M. Quesada, R. Capote, E. Sh. Soukhovitskii, S. Chiba, Phys. Rev. C 76 (2007) 057602
 - R. Capote, S. Chiba, E. Sh. Soukhovitskii, J. M. Quesada and E. Bauge, Jou. Nucl. Sci. Tech. 45 (2008) 333-340;
 - R.Capote et al, "RIPL ...", Nucl. Data Sheets 110 (2009) 3107-3214;
 - W. L. Sun, L. J. Hao, E. Sh Soukhovitskii, R. Capote and J. M. Quesada, AIP Conf. Proc.1235 (2010) 43-49

Formalism

Content

Motivation IAEA/NEA studies and recommendations

2 Dispersive Optical Model Potential with Full Lane consistency (Capote, Soukhovitskii, Quesada, Chiba)

• Historical remarks

Formalism

New OMP results:

3 Backup slides

< 177 ▶

Formalism

Nucleon-nucleus dispersive OMP

Key ingredient: dispersion relation

$$\Delta V(\mathbf{r}, E) = \frac{\mathcal{P}}{\pi} \int_{-\infty}^{\infty} \frac{W(\mathbf{r}, E')}{E' - E} dE'$$

$$\begin{split} V(r, \mathcal{R}(\theta', \varphi'), \mathcal{E}^*) &= \\ -V_{HF}(\mathcal{E}^*) f_{WS}(r, \mathcal{R}_{HF}(\theta', \varphi')) \\ - \left[\Delta V_{\nu}(\mathcal{E}^*) + iW_{\nu}(\mathcal{E})\right] f_{WS}(r, \mathcal{R}_{\nu}(\theta', \varphi')) \\ - \left[\Delta V_{S}(\mathcal{E}^*) + iW_{S}(\mathcal{E})\right] g_{WS}(r, \mathcal{R}_{S}(\theta', \varphi')) \\ + \left(\frac{\hbar}{m_{\pi}c}\right)^{2} \left[V_{so}(\mathcal{E}) + \Delta V_{so}(\mathcal{E}) + iW_{so}(\mathcal{E})\right] \times \frac{1}{r} \frac{d}{dr} f_{WS}(r, \mathcal{R}_{so}(\theta', \varphi'))(\hat{l} \cdot \hat{\sigma}) \\ + V_{Coul}(r, \mathcal{R}_{c}(\theta', \varphi')) \end{split}$$

$$E^* = E - C_{Coul} \frac{Z_p Z_T}{A^{1/3}}$$

Coupled 5 levels of the ground state band within the rigid rotor model +..

・ロト ・回ト ・ヨト

Formalism

$$V_{HF}(E) = A_{HF} \exp(-\lambda_{HF}(E - E_F))$$

$$A_{HF} = V_0 \left[1 + (-1)^{Z'+1} \frac{C_{viso}}{V_0} \frac{N - Z}{A} \right]$$

$$W_s(E) = A_s \frac{(E - E_F)^2}{(E - E_F)^2 + (B_s)^2} \exp(-C_s |E - E_F|)$$

$$A_s = W_0 \left[1 + (-1)^{Z'+1} \frac{C_{viso}}{W_0} \frac{N - Z}{A} \right]$$

$$W_{\nu}(E) = A_{\nu} \frac{(E - E_F)^2}{(E - E_F)^2 + (B_{\nu})^2}$$

・ロト ・回ト ・ヨト ・ヨト

Formalism

Lane consistency

Key ingredient: Isospin simmetry

$$egin{aligned} V_{
hop} &= V_0 + rac{N-Z}{4A} V_1 \ V_{nn} &= V_0 - rac{N-Z}{4A} V_1 \ V_{
hon} &= rac{\sqrt{N-Z}}{2A} V_1 \end{aligned}$$

Couplings GS band \longleftrightarrow IAS band

$$< \nu; I^{+\prime}(\text{residual})|V(\tau, \vec{r})|\pi; I^{+}(\text{target}) >$$

$$= <\nu|T|\pi> < I^{+\prime}(\text{residual})|V_{1}(\vec{r})(|I^{+}(\text{target}) >$$

$$= \frac{\sqrt{(N-Z)}}{2A} < I^{+\prime}(\text{residual})|V_{1}(\vec{r})|I^{+}(\text{target}) >$$

..+ 2 IAS states

u

-

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

José Manuel Quesada Molina WONDER 2012

Formalism

$GS \leftrightarrow IAS$ coupling in (p,n) reactions (²³²Th)

Formalism

Dispersive and Lane consistent OMP (1)

José Manuel Quesada Molina

Formalism

Dispersive and Lane consistent OMP (2)

RIPL 2409

RIPL 2409

José Manuel Quesada Molina

RIPL 2409

Formalism

Dispersive and Lane consistent OMP (3)

RIPL 2409

José Manuel Quesada Molina

Formalism

Dispersive and Lane consistent OMP (4)

RIPL 5409

RIPL 5409

Formalism

Dispersive and Lane consistent OMP (5)

Formalism

²³⁸U low lying nuclear levels

Formalism

Expanded coupling scheme

Vibrational-rotational model

- D.W.Chan et al, PRC26 (1982) 841, PRC26 (1982) 861
- E.Sheldon. L.E.Beghian, D.W.Chan et al, J.Phys.G:Nucl. Phys. 12, 443 (1986)
- T. Kawano, N. Fujikawa and Y. Kanda, INDC(JPN)-169 (1993) JENDL-3.2

Soft (non-axial) rotor

Yu.V.Porodzinkij and E. Soukhovitdkii, Phys. At. Nuclei 59 (1996) 228-237

$$\begin{split} R(\theta',\varphi') &= R_0 \left\{ 1 + \beta_2 \left[\cos\gamma Y_{20}(\theta') + \frac{1}{\sqrt{2}} \sin\gamma \left[Y_{22}(\theta',\varphi') + Y_{2-2}(\theta',\varphi') \right] \right] \\ &+ \sum_{\lambda = 4,6...} \beta_{\lambda 0} Y_{\lambda 0}(\theta') + \beta_3 \left[\cos\eta Y_{30}(\theta') + \frac{1}{\sqrt{2}} \sin\eta \left[Y_{32}(\theta',\varphi') + Y_{3-2}(\theta',\varphi') \right] \right] \end{split}$$

Formalism

²³⁸U as soft rotor with octupole deformations Yu.V.Porodzinkij and E. Soukhovitdkii, Phys. At. Nuclei 59 (1996) 228

Formalism

Soft rotor model in (rigid) actinides

Formalism

Nuclear shape description

• Soft (non-axial) rotor: all deformations ($\beta's,\gamma,\eta$) are considered as dynamic quantities

$$R(\theta', \varphi') = R_0 \left\{ 1 + \beta_2 \left[\cos \gamma Y_{20}(\theta') + \frac{1}{\sqrt{2}} \sin \gamma \left[Y_{22}(\theta', \varphi') + Y_{2-2}(\theta', \varphi') \right] \right] \right. \\ \left. + \sum_{\lambda = 4, 6...} \beta_{\lambda 0} Y_{\lambda 0}(\theta') + \beta_3 \left[\cos \eta Y_{30}(\theta') + \frac{1}{\sqrt{2}} \sin \eta \left[Y_{32}(\theta', \varphi') + Y_{3-2}(\theta', \varphi') \right] \right] \right\}$$

• Our approach: $\beta_2 = \beta_2^0 + \delta\beta_2$ Rigid rotor axial (static $\beta_2^0 \simeq \beta_{20}$) + axial ($\delta\beta_2, \beta_3 \cos \eta$) and non-axial ($\delta\beta_2 \sin \gamma, \beta_3 \sin \eta$) dynamic corrections

$$R(\theta',\varphi') = R_0 \left\{ 1 + \sum_{\lambda=2,4,6,\dots} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}$$
$$+ R_0 \left\{ \delta \beta_2 Y_{20}(\theta') + \beta_2^0 \frac{1}{\sqrt{2}} \sin \gamma \left[Y_{22}(\theta',\varphi') + Y_{2-2}(\theta',\varphi') \right] \right\}$$
$$+ \beta_3 \left[\cos \eta Y_{30}(\theta') + \frac{1}{\sqrt{2}} \sin \eta \left[Y_{32}(\theta',\varphi') + Y_{3-2}(\theta',\varphi') \right] \right\}$$

José Manuel Quesada Molina

Formalism

Nuclear shape description

• Soft (non-axial) rotor: all deformations ($\beta's,\gamma,\eta$) are considered as dynamic quantities

$$\begin{aligned} R(\theta',\varphi') &= R_0 \left\{ 1 + \beta_2 \left[\cos \gamma Y_{20}(\theta') + \frac{1}{\sqrt{2}} \sin \gamma \left[Y_{22}(\theta',\varphi') + Y_{2-2}(\theta',\varphi') \right] \right] \\ &+ \sum_{\lambda = 4,6...} \beta_{\lambda 0} Y_{\lambda 0}(\theta') + \beta_3 \left[\cos \eta Y_{30}(\theta') + \frac{1}{\sqrt{2}} \sin \eta \left[Y_{32}(\theta',\varphi') + Y_{3-2}(\theta',\varphi') \right] \right] \right\} \end{aligned}$$

• Our approach: $\beta_2 = \beta_2^0 + \delta\beta_2$ Rigid rotor axial (static $\beta_2^0 \simeq \beta_{20}$) + axial ($\delta\beta_2, \beta_3 \cos \eta$) and non-axial ($\delta\beta_2 \sin \gamma, \beta_3 \sin \eta$) dynamic corrections

$$R(\theta',\varphi') = R_0 \left\{ 1 + \sum_{\lambda=2,4,6,\dots} \beta_{\lambda 0} Y_{\lambda 0}(\theta') \right\}$$
$$+ R_0 \left\{ \delta \beta_2 Y_{20}(\theta') + \beta_2^0 \frac{1}{\sqrt{2}} \sin \gamma \left[Y_{22}(\theta',\varphi') + Y_{2-2}(\theta',\varphi') \right] \right\}$$
$$+ \beta_3 \left[\cos \eta Y_{30}(\theta') + \frac{1}{\sqrt{2}} \sin \eta \left[Y_{32}(\theta',\varphi') + Y_{3-2}(\theta',\varphi') \right] \right] \right\}$$

Formalism

Expanding around the equilibrium axially simmetric shape:

$$\begin{split} V(r,\theta',\varphi') &= \left[V(r,\theta',\varphi')\right]_{\delta\beta_2=0,\beta_2^0 sin\gamma=0,\beta_3=0} + \left[\frac{\partial}{\partial R}V(r,\theta',\varphi')\right]_{\delta\beta_2=0,\beta_2^0 sin\gamma=0,\beta_3=0} \times \\ &\left\{ \begin{array}{c} \delta\beta_2 Y_{20}(\theta') + \frac{1}{\sqrt{2}}\beta_2^0 \sin\gamma \left[Y_{22}(\theta',\varphi') + Y_{2-2}(\theta',\varphi')\right] \\ &+ \beta_3 \left[\cos\eta Y_{30}(\theta') + \frac{1}{\sqrt{2}}\sin\eta \left[Y_{32}(\theta',\varphi') + Y_{3-2}(\theta',\varphi')\right]\right] \right\} \end{split}$$

Which can be expanded in multipoles:

$$V(r, \theta', \varphi') = \sum_{\lambda} v_{\lambda}^{(1)}(r) Y_{\lambda,0}(\theta') + \sum_{\lambda} v_{\lambda}^{(2)}(r) Y_{\lambda,0}(\theta') \times \begin{cases} \delta\beta_2 Y_{\lambda,0}(\theta') + \frac{1}{\sqrt{2}} \beta_2^0 \gamma \left[Y_{\lambda,2}(\theta', \varphi') + Y_{\lambda,-2}(\theta', \varphi') \right] \\ + \beta_3 \left[\cos \eta Y_{30}(\theta') + \frac{1}{\sqrt{2}} \sin \eta \left[Y_{32}(\theta', \varphi') + Y_{3-2}(\theta', \varphi') \right] \right] \end{cases}$$

José Manuel Quesada Molina WONI

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Formalism

$$< i|V(r,\theta',\varphi')|f> = < (ljl)_{JM}, K|\sum_{\lambda(even)} v_{\lambda}^{(1)}(r) \left[D_{j0}^{\lambda} \cdot Y_{\lambda}\right] |(l'j'l')_{JM}, K'> +$$

$$< (IJI)_{JM}, K | \delta \beta_2 \sum_{\lambda=2,4,6,\dots} \tilde{v}_{\lambda}^{(c)}(r) \left[D_{r0}^{c} \cdot Y_{\lambda} \right] | (I'J'I')_{JM}, K' > +$$

$$< (IjI)_{JM}, \mathcal{K}|\beta_2^0 \gamma \sum_{\lambda=2,4,6,\dots} \tilde{v}_{\lambda}^{(2)}(r) \frac{1}{\sqrt{2}} \left[\left(D_{i2}^{\lambda} + D_{i-2}^{\lambda} \right) \cdot Y_{\lambda} \right] |(I'j'I')_{JM}, \mathcal{K}' > +$$

$$< (ljl)_{JM}, K|\beta_3 \cos\eta \sum_{\lambda=3,5,7...} \tilde{v}_{\lambda}^{(3)}(r) \left[D_{;0}^{\lambda} \cdot Y_{\lambda} \right] |(l'j'l')_{JM}, K' > +$$

$$< (ljl)_{JM}, K|\beta_{3}\sin\eta \sum_{\lambda=3,5,7,..} \tilde{v}_{\lambda}^{(3)}(r) \left[\left(D_{;2}^{\lambda} + D_{;-2}^{\lambda} \right) \cdot Y_{\lambda} \right] |(l'j'l')_{JM}, K' >$$

$$< (IjI)_{JM}, K|\beta_2 \gamma \sum_{\lambda=2,4,6,\dots} \frac{1}{\sqrt{2}} \left[\left(D_{;2}^{\lambda} + D_{;-2}^{\lambda} \right) \cdot Y_{\lambda} \right] |(I'j'I')_{JM}, K' > = \\ A(II; I'I'; \lambda J) \beta_2^{\text{eff}} \gamma < |K|| \frac{1}{\sqrt{2}} \left(D_{;2}^{\lambda} + D_{;-2}^{\lambda} \right) ||I'K' >$$

where these reduced matrix elements can be easily calculated, as for instance:

<ロ> <同> <同> < 同> < 同>

Formalism

²³⁸U

First β , γ , octupole and non-axial bands are now included

New OMP results:

Content

Motivation IAEA/NEA studies and recommendations

2 Dispersive Optical Model Potential with Full Lane consistency (Capote, Soukhovitskii, Quesada, Chiba)

- Historical remarks
- Formalism
- New OMP results:

3 Backup slides

< 177 ▶

New OMP results:

RIPL 2408 χ^2 (²³⁸U) = 2.05

Table 2 Dispersive coupled-channel OMP parameters for actinides

	VOLUME	SURFACE	SPIN-ORBIT	COULOMB
Real depth [MeV]	$ \begin{array}{l} V_0 = 48.62 \\ \lambda_{HF} = 0.01037 \\ C_{vize} = 10.0 \\ + \ \mathrm{dispersive} \ \Delta V_V \end{array} $	dispersive ΔV_S	$\begin{array}{l} V_{\mu\nu}=6.03\\ \lambda_{\mu\nu}=0.005\\ + \mbox{ dispersive } \Delta V_{SO} \end{array}$	$C_{Coul} = 1.62$
Imaginary depth [MeV]	$A_{v} = 12.53$ $B_{v} = 80.94$ $E_{a} = 350$	$W_0 = 17.73$ $B_i = 11.56$ $C_i = 0.01328$ $C_{wlap} = 23.5$	$W_{10} = -3.1$ $B_{10} = 160$	
Geometry [fm]	$\begin{array}{l} r_{HF} = 1.2516 + 0.001367 \ (238 - A) \\ a_{HF} = 0.636 - 0.002 \ (238 - A) \\ r_{\nu} = 1.253 \\ a_{\nu} = 0.680 - 0.00033 \ (238 - A) \end{array}$	$r_s = 1.1808$ $a_s = 0.603 - 0.0005 (238 - A)$	$r_{a0} = 1.1214$ $a_{ab} = 0.59$	$r_c = 1.2174$ $a_c = 0.551$

New OMP 19 CC $\chi^2(^{238}U) = 1.80$

▲ □ ► ▲ □ ►

< ≣⇒

New OMP results:

IAS angular distributions

José Manuel Quesada Molina WONDER 2012

New OMP results:

n+238U total cross section

New OMP results:

DCC OMP low energy observables

	²³⁸ U nucleus		²³² Th nucleus		
	RIPL 2408	new OMP 19 CC	RIPL 2408	new OMP 19 CC	
S ₀	0.92	1.04	0.85	0.85	
RIPL-3 [1]	1.03 (.08)		0.84 (.07)		
Porodzinskij [2]	1.03 (.13)		0.84 (.08)		
S ₁	1.72	1.63	1.72	1.84	
RIPL-3 [1]	1.6 (.2)		1.5 (.3)		
R' (fm)	9.64	9.51	9.68	9.68	
CSEWG 1991	9.6 (.1)		9.65 (.3)		

(1) R. Capote et al, Nucl. Data Sheets 110 (2009) 3107-3214, online at http://www-nds.iaea.org/RIPL-3

(2) Yu.V. Porodzinskij, E.Sh. Sukhovitskij and V.M. Maslov, INDC(BLR)-012, IAEA, 1998

New OMP results:

²³⁸U: OMP observables intercomparison Figure of merit

New OMP results:

²³⁸U: OMP observables intercomparison ²³⁸U: inelastic cross sections for level excitations

Coupled-levels cross sections using EMPIRE 2412 [4]

New OMP results:

²³⁸U: OMP observables intercomparison n+²³⁸U nonelastic cross section: EMPIRE 2412 OMP

José Manuel Quesada Molina

New OMP results:

²³⁸U: OMP observables intercomparison n+²³⁸U nonelastic cross section: EMPIRE 2412 OMP

New OMP results:

²³⁸U: OMP observables intercomparison $n+^{238}U$ total cross section 10 keV < E < 1 MeV

José Manuel Quesada Molina WONDER 2012

New OMP results:

²³⁸U: OMP observables intercomparison $n+^{238}U$ total cross section 0.5 MeV < E < 20 MeV

New OMP results:

²³⁸U: OMP observables intercomparison σ_{CN} 40 keV < E < 20 MeV

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

- New OMP derived for nucleon scattering on ²³⁸U and ²³²Th nuclei
- The use of proton and neutron scattering data (including quasielastic (p,n)) simultaneously made it possible to reduce the uncertainty of estimated optical potential parameters.
- OMP highlights:
 - Based on dispersive relations and Lane consistent
 - Least-squares fit of OMP parameters from (n,n),(p,p) & (p,n)IAS
 - CC couplings based on rigid rotor with soft rotor corrections (all discrete levels incl. octupole, beta, gamma, non-axial and 2 IAS)
 - Energy independent geometry.
 - Deformations close to those predicted by Nix and Moller (FRDM)

New OMP results:

Thanks for your attention

3

José Manuel Quesada Molina WONDER 2012

Bibliography

- A. Molina R. Capote, J. M. Quesada and M. Lozano, "Dispersive spherical optical model of neutron scattering from ²⁷Al up to 250 MeV " *Physical Review C*65 034616 (2002)
- J. M. Quesada, R. Capote, A. Molina and M. Lozano, "Dispersion relations in the nuclear optical model" Computer Physics Communications 153 (2003) 97-105
- J.M. Quesada, A. Molina, M. Lozano, R. Capote and J.Raynal, "Analytical expressions for the dispersive contributions to the nucleon-nucleus optical potential" *Physical Review* (67 067601 (2003)
- E. Sh. Soukhovitskii, R. Capote, J. M. Quesada and S. Chiba, "Dispersive coupled-channel analisis of nucleon scattering from ²³²Th up to 200 MeV" *Physical Review* (72 024604 (2005)
- E. Sh. Soukhovitskii, R. Capote, J. M. Quesada and S. Chiba, "Dispersive coupled-channel analisis of nucleon scattering from ²³²Th up to 200 MeV", Physical Review C72, 024604 (2005)
- R. Capote, E. Sh. Soukhovitskii, J. M. Quesada and S. Chiba, "Is a global coupled-channel dispersive optical model potential for actinides feasible?", Physical Review C72, 064610 (2005)
- N. T. Okumusoglu, F. Korkmaz Gorur, J. Birchall, E. Sh. Souhovitskii, R. Capote, J. M. Quesada and S. Chiba, "Angular distributions of protons scattered by ⁴⁰Ar nuclei with excitation of the 2+(1.46 MeV) and 3- (3.68 MeV) collective levels for incident energies of 25.1, 32.5 and 40.7 MeV", Physical Review C75, 034616 (2007)
- J. M. Quesada, R. Capote, E. Sh. Soukhovitskii and S. Chiba, "Approximate Lane consistency of the dispersive coupled.channels potential for actinides", Physical Review C76 057602 (2007)
- Capote, R; Chiba, S; Soukhovitskii, ES; Quesada, JM and Bauge, E, "A Global Dispersive Coupled-Chanel Optical Model Potential for Actinides", Journal of Nuclear Science and Technology 45,(4) 333-340 (2008)
- W. L. Sun, L. J. Hao, E. Sh Soukhovitskii, R. Capote, and J. M. Quesada, "Description of analyzing power and (p,n) reaction by a global dispersive coupled-channel optical model potential", 7th Japan-China Joint Nuclear Physics Symposium, AIP Conference Proceedings 2010; 1235(1):43 4, University of Tsukuba, Ibaraki (Japan) November, 9-13 2009

²³⁸U: OMP observables intercomparison Direct inelastic cross sections

Very last results for ²³⁸U

Table: DCC OMP parameters for ²³⁸U, EMPIRE 2412, full coupling.

	VOLUME		SURFACE	SPIN-ORBIT	- COULOMB
Real depth [MeV]	$ \begin{array}{l} V_0 = 51.13 \\ \lambda_{HF} = 0.00976 \\ C_{viso} = 20.9 \\ + \mbox{ dispersive } \Delta V_V \end{array} $		dispersive ΔV_S	$\begin{array}{l} V_{so} = 5.94 \\ \lambda_{so} = 0.005 \\ + \mbox{ dispersive } \Delta V_{SO} \end{array}$	<i>C_{Coul}</i> = 1.10
Imaginary depth [MeV]	$A_v = 11.91$ $B_v = 81.69$ $E_s = 52$	$\alpha = 0.375$	$W_0 = 17.85$ $B_s = 10.95$ $C_s = 0.01334$ $C_{wiso} = 29.2$	$W_{so} = -3.1$ $B_{so} = 160$	
Geometry [fm]	$\begin{array}{l} r_{HF} = 1.2500 \\ a_{HF} = 0.638 \\ r_{v} = 1.2619 \\ a_{v} = 0.693 \end{array}$		$r_s = 1.1701$ $a_s = 0.612$	$r_{so} = 1.1214$ $a_{so} = 0.59$	$r_c = 1.1974$ $a_c = 0.400$

²³⁸U: STATIC: $\beta_2 = 0.23$; $\beta_4 = 0.06$; $\beta_6 = -0.0064$ DYNAMIC: $\beta_{\beta}^{eff} = 0.008$; $\beta_{oct}^{eff} = 0.055$; $\beta_{\gamma}^{eff} = 0.010$; $\beta_{non-axial}^{eff} = 0.02$

イロン イヨン イヨン イヨン

Couplings GS band \longleftrightarrow IAS band

$$< \nu; I^{+}(residual)|V(\tau, \vec{r})|\pi; I^{+}(target) >$$

$$= < \nu|\mathcal{T}|\pi > < I^{+}(residual)|V_{1}^{diag}(\vec{r})(|I^{+}(target) >$$

$$= \frac{\sqrt{(N-Z)}}{2A} < I^{+}(residual)|V_{1}^{diag}(\vec{r})|I^{+}(target) >$$

$$< \nu; I^{+\prime}(residual)|V(\tau, \vec{r})|\pi; I^{+}(target) >$$

$$= < \nu |\mathcal{T}|\pi > < I^{+\prime}(residual)|V_{1}^{coupl}(\vec{r})(|I^{+}(target) >$$

$$= \frac{\sqrt{(N-Z)}}{2A} < I^{+\prime}(residual)|V_{1}^{coupl}(\vec{r})|I^{+}(target) >$$

Image: A math the second se

< ≣⇒

æ