DE LA RECHERCHE À L'INDUSTRIE

New evaluations of photon production for JEFF3

WONDER 2012 Simon Ravaux, David Bernard, Alain Santamarina

SEPTEMBER 27th 2012

Importance of the gamma transport in power reactors

Neutron and gamma heating (total normalized to unity at core center) along the mid-plane of the MASURCA ZONA2B configuration. The relative contribution of gamma heating to the total heating is also indicated.

Photon heating predominant in fast reactor's vessels

Importance of the gamma transport in power reactors

Photon heating predominant in water reactor's vessel

Needed tools for gamma heating calculations

Coupled neutron and photon transport code:

- APOLLO2, (deterministic)
- TRIPOLI4, MCNPX (Monte Carlo)

Neutron transport library:

- JEFF3.1.1, ENDF/B-VII, JENDL4.0

Neutron induced photon production library:

- JEFF3.1.1) ENDF/B-VII, JENDL4.0

Photon transport library

- EPDL91, EPDL97

Gamma production spectrum and multiplicities

Need improvements

Needed improvements for JEFF3.1.1

Energy inconsistencies in JEFF3.1.1 in the gamma production spectrum from neutron capture

WONDER | SEPTEMBER 27th 2012 | PAGE 5

Needed improvements for JEFF3.1.1

No photon production for all neutron interaction

Gd, Cd, Ag, In, ...

Inconsistent total gamma energy emitted after a radiative neutron capture ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe

No primary gamma emitted after a radiative neutron capture

⁵⁴Fe, ⁵⁷Fe, ⁵⁸Fe, Hf

Need to generate new gamma production evaluations

Fig. 1. Experimental γ-ray spectrum of Gd₂O₃.

Highlighting of the continuum and discrete gamma production spectrum induced by neutron capture on gadolinium

TALYS: A modelling nuclear reaction code

- -A common development between CEA/DAM and NRG (Holland)
- -A deterministic solver of the compound nucleus equation
- -5 strength function models and 4 level density models
- -Account for well-known discrete levels
- -Coupling with the TEFAL code to produce new evaluations at the ENDF format

Composite Gilbert-Cameron model

$$\rho_T^{\text{tot}}(E_x) = \frac{dN(E_x)}{dE_x} = \frac{1}{T} \exp(\frac{E_x - E_0}{T}) \qquad \qquad \rho_F^{\text{tot}}(E_x) = \frac{1}{\sqrt{2\pi}\sigma} \frac{\sqrt{\pi} \exp\left[2\sqrt{aU}\right]}{a^{1/4}U^{5/4}}$$

Generalized Lorentzian model

$$f_{E1}(E_{\gamma},T) = K_{E1} \left[\frac{E_{\gamma} \tilde{\Gamma}_{E1}(E_{\gamma})}{(E_{\gamma}^2 - E_{E1}^2)^2 + E_{\gamma}^2 \tilde{\Gamma}_{E1}(E_{\gamma})^2} + \frac{0.7 \Gamma_{E1} 4\pi^2 T^2}{E_{E1}^3} \right] \sigma_{E1} \Gamma_{E1}$$

Advised models by Kopecky-Uhl

$1\mu eV < E_n < 1keV$

~ 90% of the radiative capture rate in a PWR

Discrete part processed with EGAF measurements

If needed, continuum part processed with TALYS ($E_{cont}=S_n-E_{EGAF}$)

E_n>1keV

All the spectrum processed with TALYS

Spectrum placed in MF6MT102 in the ENDF format

16 nuclei : ⁵⁴Fe, ⁵⁶Fe, ⁵⁷Fe, ⁵⁸Fe, ¹⁰⁷Ag, ¹⁰⁹Ag, ¹¹³In, ¹¹⁵In, ¹¹³Cd, ¹⁵⁵Gd, ⁵⁷Gd, ¹⁷⁴Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf, ¹⁸⁰Hf

Effects of the new evaluations

Calculation of the gamma heating in each shells with TRIPOLI4 Comparison between JEFF3.1.1 and the new evaluations

Test of the new evaluations

Test of the new evaluations

Test of the new evaluations

The PERLE experiment

- -A stainless steel reflector
- -9 measurements points of the gamma heating

With JEFF3.1.1, underestimation of the gamma heating in the reflector

 $-7.5 \pm 6 \% (1\sigma)$

The PERLE experiment

Distance from	Differences with JEFF3.1.1
the core center [cm]	C2/C1-1 [%]
20.9	0.9
23.76	1.3
26.4	1.5
29.01	1.5
31.66	2.3
34.2	2.3
36.8	-0.5

The new evaluations allow to decrease the gamma heating calculation bias

Conclusion and perspectives

Before in JEFF3.1.1:

- Bad accuracy of the gamma production spectra
- Energy inconsistencies

Now:

- 14 new evaluations proposed for JEFF3.2
- Accounting for the latest EGAF measurements
- Improvement of the gamma heating calculation in a stainless steel reflector

Future:

- Calculation of the gamma heating in Hafnium with the new evaluations

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX Direction DEN
Département DER
Service SPRC