A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments

D. Regnier, O. Litaize, O. Serot

CEA Cadarache, DEN/DER/SPRC/LEPH

WONDER, 27/09/2012

Introduction	Model 1: Uncoupled neutron and gamma emission
000	00000000

Conclusion and perspectives

Table of contents

- Model 1: Uncoupled neutron and gamma emission
 - Model
 - Results & discussion
- Model 2: Coupled neutron and gamma emission
 - Model
 - Results & discussion

Introduction	Model 1: Uncoupled neutron and gamma emission
000	00000000

Table of contents

- Introduction
- Model 1: Uncoupled neutron and gamma emission Model
 - Results & discussion
- Model
 - Results & discussion

Introduction	Model 1: Uncoupled neutron and gamma emission
0 00	00000000

Conclusion and perspectives

Gamma heating problematic

Figure 2: Perle experiment

Figure 1: Relative neutron and photon heating in the Perle experiment (From Phd student S. Ravaux transport calculation with Tripoli-4.7) 0.00

Prompt fission gamma data in evaluated files

Two spectra used for all the main fissionning isotopes

- $(n+^{239}\text{Pu}, f)$: based^a on Verbinski et al. measurement (1973)
- $(n+^{235}U, f)$: based^b on Verbinski et al. measurement (1973)

^aR. E. Hunter and L. Stewart, LA-4901 (1972) ^bR. E. Hunter and L. Stewart, LA-4918 (1972)

 $M_{\gamma} = 7.78 \ \gamma/f$

Figure 3: JEFF-3.1.2 fission gamma spectrum for $(n+^{239}Pu, f)$

Prompt fission gamma data in evaluated files

Two spectra used for all the main fissionning isotopes

- $(n+^{239}\text{Pu}, f)$: based^a on Verbinski et al. measurement (1973)
- $(n+^{235}U, f)$: based^b on Verbinski et al. measurement (1973)

^aR. E. Hunter and L. Stewart, LA-4901 (1972) ^bR. E. Hunter and L. Stewart, LA-4918 (1972)

 M_{γ} = 7.17 γ /f

Figure 3: JEFF-3.1.2 fission gamma spectrum for $(n+^{235}U, f)$

Model 2: Coupled neutron and gamma emission

Conclusion and perspectives

FIFRELIN: A Monte Carlo simulation of fission fragments evaporation

Fissioning nucleus

Figure 4: Compound nucleus

Conclusion and perspectives

FIFRELIN: A Monte Carlo simulation of fission fragments evaporation

Introduction Model 1: Uncoupled neutron and gamma emission 000

Model 2: Coupled neutron and gamma emission

Conclusion and perspectives

FIFRELIN: A Monte Carlo simulation of fission fragments evaporation

 Introduction
 Model 1: Uncoupled neutron and gamma emission

 OO
 00000000

Model 2: Coupled neutron and gamma emission

Conclusion and perspectives

FIFRELIN: A Monte Carlo simulation of fission fragments evaporation

Table of contents

Introduction

- Model 1: Uncoupled neutron and gamma emission

 - Results & discussion
- Model 2: Coupled neutron and gamma emission
 Model
 - Results & discussion
- 4 Conclusion and perspectives

Introduction	Model 1: Uncoupled neutron and gamma emission
000	0000000

Conclusion and perspectives

Model 1

Approximation on neutron/gamma competition

- Emit neutrons until a limit energy is reached, E_{limit} = Sn + E_{rot}(J)
- Decay by gamma and/or conversion electron emissions.

Neutron emission

• Energy sampled in a Weisskopf spectrum:

$$\chi(\epsilon_n) \propto \sigma_{inv}(\epsilon_n) \; \epsilon_n \; m{e}^{-\epsilon_n/T}$$

Total angular momentum:

$$J_{A-1}=J_A-1/2\hbar$$

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectiv
000	0000000	0000	000

Gamma emission

For one fission fragment

- Departure from a known excited level (*E*^{*}_i, *J*_i, π_i)
- Oecay probabilities calculation:

$$l_{\gamma}(i \to j) = \frac{\Gamma_{\gamma}(i \to j)}{\Gamma_{\gamma,tot}} \qquad ($$

$$\Gamma_{\gamma}(i \to j) = \frac{f_{\chi L}(\epsilon_{\gamma})\epsilon^{2L+1} \mathcal{Y}_{fluctuation}}{\rho(E_f, J_f, \pi_f)}$$
(2)

- Sample one transition
- Gamma decay until a stable level is reached

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and
000	0000000	0000	000

Gamma emission

For one fission fragment

- Departure from a known excited level (*E_i*^{*}, *J_i*, π_i)
- Decay probabilities calculation:

$$I_{\gamma}(i \to j) = rac{\Gamma_{\gamma}(i \to j)}{\Gamma_{\gamma,tot}}$$
 (1)

$$\Gamma_{\gamma}(i \to j) = \frac{f_{XL}(\epsilon_{\gamma})\epsilon^{2L+1} \mathcal{Y}_{fluctuation}}{\rho(E_f, J_f, \pi_f)}$$
(2)

- Sample one transition
- Gamma decay until a stable level is reached

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectives
000	0000000	0000	000

Gamma emission

For one fission fragment

- Departure from a known excited level (E^{*}_i, J_i, π_i)
- Decay probabilities calculation:

$$I_{\gamma}(i \to j) = rac{\Gamma_{\gamma}(i \to j)}{\Gamma_{\gamma,tot}}$$
 (1)

$$\Gamma_{\gamma}(i \to j) = \frac{f_{XL}(\epsilon_{\gamma})\epsilon^{2L+1} \mathcal{Y}_{fluctuation}}{\rho(E_{f}, J_{f}, \pi_{f})}$$
(2)

Sample one transition

Gamma decay until a stable level is reached

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectives
000	00000000	0000	000

Gamma emission

For one fission fragment

- Departure from a known excited level (E^{*}_i, J_i, π_i)
- Decay probabilities calculation:

$$I_{\gamma}(i \to j) = rac{\Gamma_{\gamma}(i \to j)}{\Gamma_{\gamma,tot}}$$
 (1)

$$\Gamma_{\gamma}(i \to j) = \frac{f_{XL}(\epsilon_{\gamma})\epsilon^{2L+1} \mathcal{Y}_{fluctuation}}{\rho(E_f, J_f, \pi_f)}$$
(2)

- Sample one transition
- Gamma decay until a stable level is reached

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectives
000	0000000	0000	000

Gamma emission

For one fission fragment

- Departure from a known excited level (E^{*}_i, J_i, π_i)
- Decay probabilities calculation:

$$I_{\gamma}(i \to j) = rac{\Gamma_{\gamma}(i \to j)}{\Gamma_{\gamma,tot}}$$
 (1)

$$\Gamma_{\gamma}(i \to j) = \frac{f_{\chi L}(\epsilon_{\gamma})\epsilon^{2L+1} \mathcal{Y}_{fluctuation}}{\rho(E_{f}, J_{f}, \pi_{f})}$$
(2)

- Sample one transition
- Gamma decay until a stable level is reached

Model 1: Results for the ²⁵²Cf spontaneous fission

Figure 9: Total prompt gamma spectrum

Introduction	Model 1: Uncoupled neutron and gamma emission
000	0000000

Conclusion and perspectives

Model 1: Results for the ²⁵²Cf spontaneous fission

Verbinski et al. experimental setup

- Detection threshold: 140 keV
- Thin sample :
 - \simeq 200 μ g.cm $^{-2}$
 - \Rightarrow Doppler effect

Figure 10: Fifrelin prompt gamma spectrum in the fragment frame (same resolution as Verbinski measurements)

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission
000	00000000	0000

Conclusion and perspectives

Model 1: Results for the ²⁵²Cf spontaneous fission

Figure 11: Fifrelin prompt gamma spectrum in the laboratory frame (same resolution as Verbinski measurements) Assumptions:

- 4π detection of gamma emitted.
- Isotropic emission of gamma rays in the fragment frame.
- No kinetic energy loss in target.
- Lorentzian transformation.

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectives
000	000000000	0000	000

Model 1: Level density and strength function influence

Level density models:

Strength function models:

- CTM: Constant temperature
- CGCM: Composite Gilbert-Cameron
- HFB: Microscopic calculation

- SLO: Standart Lorentzian
- EGLO: Enhanced Generalized Lorentzian
- HFB: Microscopic calculation

Introduction	Model 1: Uncoupled neutron and gamma emission
000	000000000

Conclusion and perspectives

Model 1: Angular momentum of the fragments

 \Rightarrow Low energy part of the spectrum highly sensitive to J_{init}

In FIFRELIN

• Before neutron emission:

$$P(J) = rac{(J+1/2)}{\sigma^2(T)} e^{rac{(J+1/2)^2}{2\sigma^2(T)}}$$

 $\bar{J}_H = 6.6\hbar, \qquad \bar{J}_L = 5.9\hbar$ • During neutron emission:

$$J_{A-1}=J_A-1/2\hbar$$

Ref	Wilhelmy ^{1,2} (1972)	Skarsvag ^{1,2} (1980)	Mukhopadhyay ^{1,2} (2012)
\overline{J}_L	7ħ	6ħ	$\simeq 5\hbar$
\bar{J}_H	8.4 <i>ħ</i>	$5.3\hbar$	\simeq 12 \hbar

Table 1: Average angular momentum of primary fragments from ²⁵²Cf SF

- 1: Only even-even post-neutron fragments are considered.
- 2: Estimation of the uncertainty: ±2ħ.

Introduction	Model 1: Uncoupled neutron and gamma emission
000	000000000

Conclusion and perspectives

Effect of an increase of post-neutron fragment J

Figure 12: Prompt gamma spectrum for the spontaneous fission of ²⁵²Cf

For a good agreement of low energy part of the gamma spectrum post-neutron angular momentum are found to be:

$$J_L \simeq 8\hbar, \qquad J_H \simeq 9\hbar$$

Introduction	Model 1: Uncoupled neutron and gamma emission
000	0000000

From model 1 to model 2 ...

Model 1 results:

- Good agreement of neutron observables with experiments.
- First prediction of a prompt gamma fission spectrum.
- Overestimation of total gamma energy $(E_{\gamma,tot})$?
- Prompt gamma spectrum too hard.

Remaining questions:

- Neutron emission before gamma emission ?
- Average $\Delta J = 1/2\hbar$ during a neutron emission ?
- Initial total angular momentum of the fission fragments ?
- Validity of a Weisskopf spectrum at low excitation energy ?

Table of contents

Introduction

- Model 1: Uncoupled neutron and gamma emission
 Model
 - Results & discussion
 - Model 2: Coupled neutron and gamma emission
 - Model
 - Results & discussion
- 4 Conclusion and perspectives

Introduction	Model 1: Uncoupled neutron and gamma emission
000	00000000

Conclusion and perspectives

Model 2

Transition probability

$$p(i \to j) = \frac{\Gamma(i \to j)}{\Gamma_{\gamma}^{tot} + \Gamma_{neutron}^{tot}}$$
(3)

⇒ Neutron and gamma emission competition

Neutron width calculation

$$\Gamma_n(i \to j) = \frac{T_{l,j}(\epsilon_n) y_{fluctuation}}{2\pi\rho(E_f, J_f, \pi_f)} \quad (4)$$

 $T_{l,j}(\epsilon_n)$ are provided by a Talys-1.4 optical model calculation using a Koning-Delaroche spherical potential

Figure 13: Possible decay

Introduction	Model 1: Uncoupled neutron and gamma emission
000	00000000

Model 2: Preliminary results for the ²⁵²Cf SF

	$<\epsilon_n>$ in FF frame (MeV)	ν	E* for neutron (MeV)
Vorobyev (2005)		3.76 ± 0.03	
Model 1	1.34	3.78	25.7
Model 2	1.23	4.0	27.4

Table 2: Neutron results

	$<\epsilon_{\gamma}>$ (MeV)	M_{γ}	$E_{\gamma,tot}$ (MeV)
Chyzh (2012)	0.94	8.16	7.8
Model 1	1.0	8.0	8.1
Model 2	0.86	7.5	6.4

Table 3: Gamma results

New observables provided by the model 2

- $\Delta J_n = 0.1 \hbar/n$
- Average number of gamma emitted before the last prompt neutron: ~ 4.10⁻³γ/f (1γ every 250 fissions)

Introduction Model 1: Uncoupled neutron and gamma emission Model 2: Coupled neutron and gamma emission Conclusion and perspectives

Model 1 vs Model 2 for the ²⁵²Cf spontaneous fission

Figure 14: Total prompt gamma spectrum

 Introduction
 Model 1: Uncoupled neutron and gamma emission
 Model 2: Coupled neutron and gamma emission
 Conclusion and perspectives

 000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Model 1 vs Model 2 for the ²⁵²Cf spontaneous fission

Figure 14: Total prompt gamma spectrum

Introduction	Model 1: Uncoupled neutron and gamma emissi
000	00000000

Conclusion and perspectives

Influence of parameters and models

Strength function γ

- Δν < 1%
- $\Delta \epsilon_{\gamma} \simeq 12\%$
- $\Delta E_{\gamma,tot} \simeq 1\%$
- Shape of the gamma spectrum impacted

Level density

- $\Delta \nu \simeq 3\%$
- $\Delta \epsilon_{\gamma} \simeq 6\%$

•
$$\Delta E_{\gamma,tot} \simeq$$
 4%

• Shape of the gamma spectrum impacted

Angular momentum of primary FF

High sensitivity of main observables, $+2\hbar$ leads to:

- ν: −1%
- *E*_{γ,tot}: +0.7 MeV
- ϵ_{γ} : -7 %
- *M*_γ: +20%

Introduction	Model 1: Uncoupled neutron and gamma emission
000	00000000

Conclusion and perspectives

Table of contents

Introduction

- Model 1: Uncoupled neutron and gamma emission
 Model
 - Results & discussion
- Model 2: Coupled neutron and gamma emission
 Model
 - Results & discussion

Introduction	Model 1: Uncoupled neutron and gamma emission
000	00000000

Realized for the moment:

- Implementation of two main cascade models, work on neutron/gamma competition.
- Implementation and comparison of several models of level density and strength function.
- Optimization in speed and memory of the code, parallelization.
- Calculation of several observables of the fission process (post-neutron fragments data, multiplicity for a given fragmentation ...).

000	00000000	0000	000	
Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectives	

Perspectives:

- Impact of the optical model used for neutron transmission calculation.
- Investigation on the energy balance between neutron and gamma emission.
- Calculation of observables with high sensitivity to angular momentum: anisotropy gamma.
- Measurements at ILL before end of 2012.
- ...

Other application scope:

 Neutron capture calculation: spectrum, multiplicity, branching ratio...

Introduction	Model 1: Uncoupled neutron and gamma emission	Model 2: Coupled neutron and gamma emission	Conclusion and perspectives
000	00000000	0000	000

Thank you for your attention !

