Modelling the widths of fission observables in GEF

K.-H. Schmidt, B. Jurado

CENBG, Gradignan, France

Supported by the European Commission within the Seventh Framework Programme through Fission-2010-ERINDA (project no.269499)

GEF (GEneral Fission model)

Reliable results for:

- -->isotopic fission-fragment yields
- -->energy and multiplicity distrib. of prompt neutrons and gammas

Predictions for nuclei where no data are available

Semi-empirical but based on solid physical concepts Good predictive power!

www.khs-erzhausen.de www.cenbg.in2p3.fr/GEF

What determines the widths of fission observables?

Fission-fragment mass distribution of ²³⁵U(n_{th},f). GEF [JEF/DOC 1243] calculation with contribution of fission channels and data from ENDF B VII.

...and their dependence with energy?

Asymmetric modes

F.-J. Hambsch et al., Nucl. Phys. A 679 (2000) 3

Symmetric mode

Corresponds to σ_{Δ} of 10 units

K.-H. Schmidt et al., Nucl. Phys. A 665 (2000) 221 No data for evolution with En of symmetric mode at low neutron energies

Potential-energy surface

Mass distribution results from dynamic evolution driven by the potential.

Different approaches

Time-dependent microscopic calculations based on the constrained HFB approach.

- H. Goutte et al., PRC 71 (2005) 024316
- + Dynamical model
- + Fully quantum-mechanical
- + Self-consistent
- Very time consuming (limited degrees of freedom)
- Difficulties to handle dissipation

Stochastic approaches (Langevin-type)

- J. Randrup et al., PRC 84 (2011) 034613
- + Dynamical model
- Not fully quantum mechanical
- Very time consuming (limited degrees of freedom)
- Smoluchowski equation assumes full dissipation

Statistical approach at scission

- B. D. Wilkins et al, PRC 14 (1976) 1832
- + Simple calculation
- No dynamics
- Not fully quantum mechanical
- Macrocanonical

Critics on the statistical scission-point model from dynamical calculations¹⁾

The **statistical scission-point models** are **unable** of explaining the widths of the mass and energy distributions.

During the descent from saddle to scission, the distribution keeps **memory on** the distribution at **former times**.

The width of the distribution of a specific normal mode is approximately given by the fluctuation of the corresponding **quantum oscillator** with an effective stiffness that is equal to the **stiffness** of the potential somewhere **between saddle and scission**.

→ Dynamics can be considered by assuming an early freeze out of the distribution.

1) G. D. Adeev, V. V. Pashkevich , Nucl. Phys. A 502 (1989) 405c

Statistical microcanonical model with dynamical and quantum-mechanical features

Statistical microcanonical model with dynamical and quantum-mechanical features

"at freeze out" (at the appropriate position between saddle and scission) we assume a parabolic potential as a function of mass asymmetry where m and stiffness are determined at the "freeze out" point.

Statistical microcanonical model with dynamical and quantum-mechanical features

Population of the states given by the properties of the heat bath: Etot (not inifinite!) and T (the most probable configurations will be those of maximum entropy)

For nuclei at low E* $\rho \propto \exp(E^*/T)$ (constant-temperature)

If Etot>>T
$$\sigma_q^2 = \frac{\hbar\omega}{2C} \coth\left(\frac{\hbar\omega}{2T}\right)$$
 If T<> $\hbar\omega$, zero-point motion $\sigma_q^2 = \frac{\hbar\omega}{2C}$ If T>> $\hbar\omega$, classical limit $\sigma_q^2 = \frac{T}{C}$

Quantitative formulation of the model

Symmetric fission channel

At higher energies:

Measured mass width $\sigma_A^{(1)}$ and

temperature *T* of heat-bath from **Fermi-gas level density**:

$$\rightarrow C = T/\sigma_A^2$$
 (**C** = 0.0049 MeV for ²³⁸Np)

In agreement with theoretical value of C little beyond saddle $^{2)}$.

At lower energy (a few MeV above saddle):

$$\sigma_q^2 = \frac{\hbar\omega}{2C} \coth\left(\frac{\hbar\omega}{2T}\right)$$

$$C = 0.0049 \text{ MeV}$$

$$\hbar\omega = 0.5 \text{ MeV}$$
(Nix,1967: $\hbar\omega = 1.2 \text{ MeV at saddle.}$)

 $T = 0.45 \text{ MeV (from systematics}^3)$

 σ_A =10 units (experiment)

\hbar *ω* ≈ *T*: Width is strongly influenced by the zero-point motion!

- 1) A.Ya. Rusanov, M.G. Itkis and V.N. Okolovich, Phys. At. Nucl. 60 (1997) 683.
- 2) E.G. Ryabov, A. V. Karpov, P. N. Nadtochy, G. D. Adeev, PRC 78 (2008) 044614
- 3) Till von Egidy et al., Phys. Rev. C 72 (2005) 044311

Quantitative formulation of the model

Asymmetric fission channels

Assuming that the mass asymmetry has the same inertia "m" as for the symmetric channel we obtain for ²³⁷Np(n_{th},f):

In thermal equilibrium:

Width in mass asymmetry is totally determined by the zero-point motion!!!!

Quantum oscillator in mass asymmetry for asymmetric fission component (representative for S2)

Like for symmetric fission: The deduced empirical value ($\hbar\omega = 3.3 \text{ MeV}$) is about 1/2 the theoretical value at saddle. Potential-energy landscape (M. Mirea)

Deduced $\hbar\omega$.

Influence of shell effects

Constant-temperature level-density formula

$$\rho \sim 1/T \exp(E/T)$$

with

$$T = A^{-2/3} (17.45 - 0.51 \, \delta U + 0.051 \, \delta U^2)$$
 [T.v. Egidy et al.] and assuming:

$$\delta U(q) = \delta U_o + C/2(q-q_o)^2$$
, $\delta U_o = -5MeV$

In an oscillator coupled to a heat bath, the restoring force *F* is given by

$$F = T dS/dq$$
 with $S=In(\rho)$

By integration one obtains the potential $U = \int F dq$. The stiffness C is given by $C = d^2U/dx^2$.

--> We find a reduction of C due to shell effects Since for the zero-point motion: $\sigma_{\Delta}^2 = \hbar \omega / (2C)$

The washing out of shell effects leads to an increase of σ_{Δ} with increasing E^* !

Overview asymmetric fission channels: energy dependence

Energy dependence of $\sigma_{\rm A}$ of the quantum oscillator fits rather well to the experimental data [F.-J. Hambsch et al., Nucl. Phys. A 679 (2000) 3].

.

Conclusions

- •The deduced properties of the quantum oscillators imply that the widths of the asymmetric fission channels (in low-energy fission) are essentially given by the zero-point motion!
- •The width of the symmetric fission channel is strongly influenced by the zero-point motion
- •The weak increase of the widths of asymmetric modes with En is due to the washing out of shell effects and not to the population of higher oscillator states
- •Models should include quantum-mechanical effects to give a realistic estimation of the widths of the mass distributions