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The theoretical approach to the elastic scattering of a nucleon from a nucleus, pio-

neered by Watson [1], made familiar by Kerman, McManus, and Thaler (KMT) [2] and

further developed as the spectator expansion [3, 4, 5, 6] is now being applied with striking

success. In a similar vein, a slightly di�erent approach to the multiple scattering expan-

sion within the KMT framework is being pursued by the Surrey group [7]. The theoretical

motivation for the spectator expansion derives from our present inability to calculate the

full many-body problem. In this case an expansion is constructed within a multiple scat-
tering theory predicated upon the idea that two-body interactions between the projectile

and the target nucleons inside the nucleus play the dominant role. In the spectator ex-
pansion the �rst order term involves two-body interactions between the projectile and one
of the target nucleons, the second order term involves the projectile interacting with two

target nucleons and so forth. Hence the expansion derives the ordering from the num-
ber of target nucleons interacting directly with the projectile, while the residual target

nucleus remains `passive'. Due to the many-body nature of the free propagator for the
the projectile + target system it is necessary to detail certain choices made with respect
to the ordering in the spectator series. In our approach a theoretical treatment of this

many-body propagator as a�ected by the residual target nucleus is included in �rst order.

The calculation of the optical potential relies on two basic input quantities. One is
the fully-o�-shell NN t-matrix, which represents the current understanding of the nuclear
force, and the other is the nuclear wave functions of the target, representing the best

understanding of the ground state of the target nucleus. To account for the modi�cations
of the free propagator inside the nucleus, the same mean �eld potentials are used from

which the ground state wave function of the target are derived. There are no adjustable
free parameters present in this calculation.

The standard approach to elastic scattering of a strongly interacting projectile from

a target of A particles is the separation of the Lippmann-Schwinger equation for the

transition amplitude
T = V + V G0(E)T (1)
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into two parts, namely an integral equation for T :

T = U + UG0(E)PT; (2)

where U is the optical potential operator and de�ned by a second integral equation

U = V + V G0(E)QU: (3)

In the above equations the operator V =
PA

i=1 v0i consists of the two-body NN potential

v0i acting between the projectile and the ith target nucleon. The free propagator G0(E)

for the projectile+target system is given by G0(E) = (E�H0+i�)�1, and the Hamiltonian

for the (A+1) particle system by H = H0 + V . Here the free Hamiltonian is given by

H0 = h0 +HA, where h0 is the kinetic energy operator for the projectile and HA stands

for the target Hamiltonian. De�ning j�Ai as the ground state of the target, we have

HAj�Ai = EAj�Ai.
The operators P and Q in Eqs. (1) and (2) are projection operators with P + Q = 1,

and P being de�ned such that Eq. (2) becomes a one-body equation. In this case, P

is conventionally taken to project on the elastic channel, such that [G0; P ] = 0, and is
de�ned as P = j�Aih�Aj=h�Aj�Ai. With these de�nitions, the transition operator for

elastic scattering can be de�ned as Tel = PTP , in which case Eq. (2) can be written as

Tel = PUP + PUPG0(E)Tel: (4)

The fundamental idea of the spectator expansion for the optical potential is an order-
ing of the scattering process according to the number of active target nucleons interacting

directly with the projectile. The �rst order term involves two-body interactions between
the projectile and one of the target nucleons, i.e. U =

PA
i=1 �i, where the operator �i is

derived to be

�i = v0i + v0iG0(E)Q�i

= v0i + v0iG0(E)�i � v0iG0(E)P�i (5)

= �̂i � �̂iG0(E)P�i:

Here �̂i is de�ned as the solution of

�̂i = v0i + v0iG0(E)�̂i: (6)

It should be noted that the above equations all follow in a straightforward derivation and

correspond to the �rst order Watson scattering expansion [1].

For elastic scattering only P�iP (from Eq. (5)) or equivalently

h�Aj�ij�Ai = h�Aj�̂ij�Ai � h�Aj�̂ij�Ai
1

(E � EA)� h0 + i�
h�Aj�ij�Ai; (7)
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needs to be considered. Since Eq. (7) is a one-body integral equation, the principal

problem is to �nd a solution of Eq. (6), which still has a many-body character due to

G0(E) = (E � h0 � HA + i�)�1. If the propagator G0(E) is expanded in the the spirit

of the spectator expansion within a single particle description, one obtains in �rst order

[6, 9]

Gi(E) = [(E � Ei)� h0 � hi �Wi + i�]�1: (8)

Here hi is the kinetic energy of the ith target particle and Wi =
P

j 6=i vij represents the

force acting between the struck target nucleon and the residual (A-1) nucleus. Then the

operator �̂i of Eq.(6) can be written as

�̂i = v0i + v0iGi(E)�̂i

= t0i + t0igiWiGi(E)�̂i: (9)

Here the operators t0i and gi are de�ned as t0i = v0i + v0igit0i and gi = [(E � Ei) �
h0 � hi + i�]�1. The second term of Eq. (9), namely t0igiWiGi(E)�̂i, can be considered as

modi�cation of the free scattering process given by t0i due to the presence of the nuclear

medium in the �rst order spectator expansion. The structure of Eq.(9) also shows that
already the �rst order term of the optical potential exhibits a three-body character [6, 8].

Our numerical treatment of this term includes the full spin-structure of this last term in
Eq. (9), but not the full three-body kinematics and is given in detail in Ref. [9].

In lowest order, the operator �̂i of Eq. (9) is given by �̂i � t0i, which corresponds to
the conventional impulse approximation. the matrix element h�Aj�ij�Ai given in Eq. (7)

represent the full-folding optical potential and is given explicitly as

hk0jU jki = hk0�Aj
X

�=p;n

��jk�Ai; (10)

where � represents the sum over the target protons and neutrons. Since hk0jU jki is
the solution of the sum of the one-body integral equations represented by Eq. (7), it is

su�cient to consider the driving term

hk0jÛ jki = hk0�Aj
X

�=p;n

�̂�jk�Ai; (11)

where �̂� is given by Eq. (9). Inserting a complete set of momenta for the struck target

nucleon before and after the collision we obtain

Û (k;k0) =
X

�=p;n

Z
d3p0d3p hk0p0 j �̂�(�) j kpi ��

 
p0 +

k0

A
;p+

k

A

!
�3(k0 + p0 � k� p):(12)
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FIG. 1:Diagram for the optical potential

matrix element for the single scattering term

The structure of Eq. (12) is repre-

sented graphically in Fig. 1, which also

illustrates the momenta k0;k;p0 and p.

By evaluating the �-function, introducing

the variables q = k0 � k, K = 1

2
(k+ k0),

p̂ = 1

2
(p0 + p), and changing the integra-

tion variable from p̂ to P = p̂+ K
A
, which

accounts for the recoil of the nucleus [10],

we obtain

Û(q;K) =
X

�=p;n

Z
d3P

*
k0;P�

q

2
�
K

A
j �̂�(�) jk;P+

q

2
�
K

A

+

��

�
P�

A� 1

A

q

2
;P+

A� 1

A

q

2

�
: (13)

The NN amplitude �̂� in Eq. (13) is evaluated in the zero momentum frame of the nucleon-
nucleus system. In order to relate this amplitude to the corresponding matrix element
evaluated in the zero momentum frame of the two nucleons, we have to introduce a M�ller

factor for the frame transformation [11] and obtain as �nal expression for the full-folding
optical potential [12].

Û(q;K) =
X

�=p;n

Z
d3P �(P;q;K) �̂�

�
q;

1

2
(
A+ 1

A
K�P); �

�

��

�
P�

A� 1

A

q

2
;P+

A� 1

A

q

2

�
: (14)

Here the arguments of �̂� are q = k0 � k = K0 �K and 1

2
(K0 +K) = 1

2
(A+1

A
K�P) and

�(P;q;K) =

"
EN(K

0)EN(�K
0)EN(K)EN (�K)

EN(k0)EN(P� q

2
� K

A
)EN (k)EN(P+ q

2
� K

A
)

#
: (15)

The free two-nucleon amplitude �̂� is calculated from the free NN t-matrix according
Eq. (9) at an appropriate energy �. In principle, this energy should be the beam energy
minus the kinetic energy of the center of mass of the interacting pair less the binding energy

of the struck particle. Following this argument, � should be coupled to the integration

variable P. The full-folding calculations of Refs. [13, 14] are carried out along this vain.

For our calculations we take a di�erent approach, namely we �x � at the two-body center-
of-mass (c.m.) energy corresponding to free NN scattering at the beam energy so that the
same laboratory energy applies to the two-body and nuclear scattering. This approach

has been applied in earlier work [15] and is also used in the work of the Surrey Group [7].
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The evaluation of the full-folding optical potential as given in Eq. (14) requires a

nuclear density matrix, which in a single particle picture is given as

��(~p
0; ~p) =

X
i

	y
�;i(~p

0)	�;i(~p); (16)

where 	�;i(~p) are the wave functions describing the single particle nuclear ground state.

The index � stands for protons and neutrons, respectively, and the total nuclear ground

state is given by the sum of the two. In order to achieve consistency with our formulation

of incorporating e�ects of the `nuclear medium' on the scattering process we choose as

model density matrices the ones derived from the same nuclear mean �elds Wi as given in

Eq. (9). The models used are a non-relativistic reduction of a Dirac-Hartree model [16]

and a non-relativistic Hartree-Fock-Bogolyubov (HFB) structure calculation [17, 18]. The

Dirac-Hartree calculation is a spherical solution of the one-body Dirac equation assuming

a scalar potential and the time component of a vector potential �eld. The nonrelativistic

HFB microscopic nuclear structure calculation uses the parameterized e�ective �nite-

range, density dependent Gogny D1S e�ective NN interaction. The parameter of the

Gogny D1S interaction are �tted to a certain set of stable nuclei.

The density matrix derived from the Dirac Hartree calculation is given by

��(r
0; r) =

X
n�

"
G�;tz ;n;�(r

0)

r0
G�;tz ;n;�(r)

r
+

F�;tz ;n;�(r
0)

r0
F�;tz;n;�(r)

r

#
2j + 1

2l + 1

X
m

l

Y �m
l

l (r0)Y m
l

l (r);

(17)
where n stands for the principal quantum number, � for the angular momentum quantum

numbers J and l and tz for the z-component of the isospin. After a double Fourier
transform we obtain

��(~p
0; ~p) =

1

2�2

X
J

(2J + 1)
X
l

Pl(cos �~p;~p0)

[
Z
dr0r0 jl(~p

0r0)F�;tz;n;�(r
0)
Z
dr r jl(~pr)F�;tz;n;�(r) +Z

dr0r0 jl(~p
0r0)G�;tz;n;�(r

0)
Z
dr r jl(~pr)G�;tz;n;�(r) ]: (18)

Details of the derivation can be found in Ref. [12]. The density matrix ��(~p
0; ~p) given in

Eq. (18) is de�ned in the rest frame of the nucleus. For our calculation of the full-folding
optical potential, we need to evaluate the function at the corresponding momenta in the
nucleon-nucleus frame. This is facilitated by variable transformations p = ~p� k

A
and

p0 = ~p0 � k0

A
, which takes into account recoil. For the calculation of the density matrices

derived from a non-relativistic Hartree-Fock Bogolyubov (HFB) calculation based on the
Gogny-D1S NN interaction we employ essentially the same procedure as described above.
The wave functions are created in r-space by a code provided by Berger [17] and are

represented in a axially symmetric harmonic oscillator basis. A double Fourier transform

is then performed using the oscillator basis and summing over all harmonic oscillator

quantum numbers.
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The study of elastic scattering of neutrons and protons from spin-zero target nuclei

presented here are strictly �rst order in the spectator expansion. The full-folding optical

potential is calculated as given in Eq. (15) using either the DH or HFB model densities.

The calculations for scattering at energies smaller than 200 MeV take into account the

coupling of the struck target nucleon to the residual nucleus via the mean �eld potential

Wi, which is chosen to be consistent with the model density employed. Details of this

procedure are given in Refs. [6, 9]. In all cases (unless speci�ed otherwise the calculations

presented here use the free NN t-matrix based upon the full Bonn potential [19]. It is also

to be understood that we perform all spin summations in obtaining Û(q;K). This reduces

the required NN t-matrix elements to a spin independent component (corresponding to the

Wolfenstein amplitude A) and a spin-orbit component (corresponding to the Wolfenstein

amplitude C). Since we are assuming that we have spin saturated nuclei, the components

of the NN t-matrix depending on the spin of the struck nucleon vanish.

In order to assess the importance of the o�-shell character of the nuclear density

matrix, we compare the full-folding calculations with the commonly used optimum fac-

torized or o�-shell `t�' approximation [10, 20]. The latter is obtained by observing that

the nuclear size is signi�cantly larger than the range of the NN interaction and thus to
amplitude �̂� is expected to be the slower varying quantity in the integral of Eq. (15).

One then expands �̂� (including the factor �(q;K;P)) in P about a �xed value P0, which
is determined by requiring that the contribution of the �rst derivative term is minimized.
After the integration over the density matrix, producing the diagonal density pro�le ��(q),

the `optimum factorized' or `o�-shell t�' form of the optical potential is given by

Ûfac(q;K) =
X

�=p;n

�(q;K) �̂�

�
q;

A + 1

2A
K; �

�
�� (q) : (19)

Here the non-local character of the optical potential is solely determined by the o�-shell

NN t-matrix. In Figs. 2 and 3 we show the elastic scattering observables for proton
scattering from 40Ca and 208Pb based on full-folding optical potentials and compare the
to the corresponding calculations using the optimum factorized form. The �gures show

that the optimum factorized form is quite a good representation of the full-folding integral,
even at lower energies. In the case of proton scattering from 208Pb at 65 MeV, the inclusion

of the o�-shell structure of the nuclear density matrix makes the nucleus appear slightly
larger, which becomes apparent in the shifted di�raction pattern of d�

d

. In Fig. 4 total

neutron cross section data for 16O, 40Ca, 90Zr, and 208Pb are shown along with various

calculations of �tot(E) at a number of energies. The open circles represent the full-folding
calculations, which are all based on the DH model for the nuclear densities.
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Fig.2:The angular distribution

of the di�erential cross-section

( d�
d


), analyzing power (Ay) and

spin rotation function (Q) are

shown for elastic proton scatter-

ing from 40Ca at 200 MeV labo-

ratory energy. The solid line rep-

resent the calculation performed

with a �rst-order full-folding op-

tical potential based on the DH

density [16] and the full Bonn

model [19], the dashed curve is

based on the factorized, o�-shell

`t�' approximation. The data are

taken from Ref. [24].

Fig.3a:Same as Fig. 2, except

for 208Pb at 200 MeV. The data

are from Ref. [25]

Fig.3b:Same as Fig. 2, except

for 208Pb at 65 MeV. The data

are from Ref. [26]
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Fig.4:The neutron-nucleus total cross-sections for scat-

tering from 16O, 40Ca, 90Zr, and 208Pb are shown as a

function of the incident neutron kinetic energy. The dot-

ted line represents the data taken from Ref. [27, 28]. The

open circles correspond to the full-folding calculations us-

ing the full Bonn NN t-matrix [19] and the DH model [16]

for the density. For energies below 200 MeV the coupling

of the struck target nucleon to the residual nucleus via

the mean �eld force Wi is taken into account. The solid

diamonds represent the corresponding calculations using

the optimum factorized, o�-shell `t�' form. The stars rep-

resent calculations where the e�ects due to the nuclear

medium are omitted. The crosses stand for calculations

using a local, on-shell `t�' optical potential.

For energies below � 200 MeV
the modi�cation of the free propa-

gator through the DH mean �eld is
included as described in Ref. [9]. It

has been shown in Ref. [6] that for

higher energies this modi�cation of
the free propagator becomes negli-

gible. The solid diamonds repre-

sent calculations based on the fac-

torized, o�-shell `t�' form.
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A general trend to be observed in Fig. 4 is the slightly lower value of �tot(E) obtained

from the full-folding calculations compared to the factorized approximation. This trend is

almost independent of the energy and the nucleus under consideration. The importance

of including the coupling of the struck target nucleon to the residual nucleus becomes

apparent at energies below 200 MeV. Calculations omitting this e�ect of the `nuclear

medium' on the free propagator are also given in Fig. 4 and indicated by stars. In order

to point out the importance of including the o�-shell structure of the NN t-matrix in the

calculation of the optical potential, we also show in Fig. 4 the values of �tot(E) (indicated

by crosses) obtained from a completely local potential. A local optical potential is obtained

by imposing the on-shell constraint q �K = 0 on the NN t-matrix in Eq. (19), which leads

then to the familiar form of a local optical potential, Ûloc = �̂�(q)��(q).

Fig.5:The angular distribution of the di�erential cross-section ( d�
d


),

analyzing power (Ay) and spin rotation function (Q) are shown for

elastic proton scattering from 40Ca at 100 MeV laboratory energy[29]

and 90Zr at 80 MeV laboratory energy[30]. In both cases the full-

folding optical potentials are based on the full Bonn model [19] and

the DH density (solid), as well as the HFB model (dashed) for the

nuclear density. All calculations include the modi�cation of the free

propagator through the corresponding mean �eld.

Fig.6:The angular distribution

of the di�erential cross-section

( d�
d


), analyzing power (Ay) and

spin rotation function (Q) are

shown for elastic proton scat-

tering from 40Ca at 200 MeV

laboratory energy. The calcu-

lations are based on the full-

folding calculation and employ

the NN t-matrices from the

following potentials: Nijmegen

I(solid), Nijmegen II (dashed),

AV18 (dashed-dot) and CD Bonn

(dotted).

In order to study the in
uence of the nuclear structure on the elastic observables,

we show in Fig. 5 scattering of protons from 40Ca at 100 MeV and from 90Zr at 80

MeV. This choice of energies is mainly motivated by the availability of experimental data.
In both cases the coupling of the struck target nucleon to the residual nucleus via the

corresponding mean �eld force is taken into account. For the lighter nucleus 40Ca the

elastic observables exhibit more sensitivity to the nuclear structure model than for the
heavy nucleus 90Zr. A possible explanation for this behavior is the similarity of the two
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models under consideration, namely the HFB and the DH model. Though both models

have very di�erent physical ingredients, we found that the resulting density matrices as

well as the corresponding mean �elds exhibit a very similar structure.

As already pointed out when discussing the total cross section for neutron scattering,

the major part of the nonlocality in the nucleon-nucleus optical potential is due to the non-

locality in the NN t-matrix. In order to get a quantitative description of the experiment,

the inclusion of the nonlocality of the NN t-matrix is absolutely necessary. Following

along this vain, the next question to ask is whether p-nucleus scattering observables are

sensitive to di�erent o�-shell structures in the NN t-matrices. To study this question, we

show in Fig. 6 the scattering of protons from 16Ca at 200 MeV for four di�erent NN poten-

tials. These potentials, namely the Nijmegen models I and II [21], the Argonne potential

AV18 [22] and the charge-dependent Bonn potential [23], describe the NN observables

with �2 � 1, which means that these potentials are essentially on-shell equivalent. The

curves given in Fig. 6 show that the calculation of elastic p-16O observables exhibit no

di�erence between these potentials. This implies that the optical potential for nucleon-

nucleus scattering may not sample the o�-shell NN t-matrix in regions for enough o� the

energy shell, where di�erences in the NN t-matrices occur.

In summary, we performed calculations of the �rst order optical potential for nucleon-
nucleus scattering consistent within the �rst order spectator expansion of multiple scat-

tering theory. Within this �rst order term, the e�ect of the nuclear medium is taken into
account by including the coupling of the struck target nucleon to the residual nucleus
via the same mean �eld force from which the nuclear density matrix is derived. One of

the most noteworthy results is the correct prediction of the spin observables for elastic
proton scattering from light (16O) as well as heavy (90Zr, 208Pb) nuclei as low as 65 MeV.
Another important result is the correct prediction of total cross section measurements for

neutron scattering from light (12C, 16O) as well as heavy (90Zr, 208Pb) nuclei in the energy
regime between 75 and 600 MeV. In the calculation of the full-folding optical potential

the o�-shell structure of the NN t-matrix enters as crucial ingredient. However, realistic,
on-shell equivalent NN potentials have a very similar o�-shell structure close to the on-
shell condition, so that o�-shell di�erences cannot be seen in the elastic observables for

nucleon-nucleus scattering.
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