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Abstract

In this work we present a semi-phenomenological spherical optical model potential (OMP), for

elastic scattering of incoming neutrons or protons on A�40 nuclei, up to 200 MeV. The central part of

this OMP is formally identical to that derived by Jeukene, Lejeune and Mahaux (JLM) from Br�uckner-

Hartree-Fock calculations in nuclear matter. However, discontinuities in the parametrisations of the

imaginary part of the JLM OMP at 10 MeV, and the pathology exhibited by the imaginary part of

this OMP when extrapolated above 160 MeV, led us to re-�t the imaginary part of the JLM nuclear

matter potential. For the spin-orbit (SO) potential, we use a phenomenological complex SO potential

with a Scheerbaum form factor, permitting us to get good �ts to the experimental di�erential cross

sections and analyzing powers, up to 185 MeV. We then allow the normalizations of the potentials

depths to vary as a function of energy in order to get the best �t to experimental elastic scattering

data, and we express these variations with a functional form, thus getting a global OMP for nucleons

up to 200 MeV. This global OMP, built using point proton and neutron radial densities calculated in

the Hartree-Fock-Bogoliubov (HFB) framework with the Gogny force, is able to account fairly well

for the experimental angular distributions and reaction cross sections, provided the target nucleus

is spherical (i.e., 40
Ca, 90

Zr, 93
Nb, 116

Sn, 120
Sn, 208

Pb, 209
Bi) or quasi-spherical (i.e., 54

Fe, 56
Fe,

58
Ni, 60

Ni, 63Cu, 65
Cu).

1 Introduction.

The construction of a microscopic optical model potential(OMP) is a necessary step if one is to predict
elastic scattering and reaction cross sections without having to rely upon measurements. This step
has been taken with the construction of microscopic OMPs [1, 2] that have been used successfully in
experimental data analysis [3, 4, 5, 6, 7]. However, for most of these studies, [3] being a notable exception,
the OMP used was only microscopic in the sense of being formally derived from a realistic bare nucleon-
nucleon interaction, while the point proton and neutron radial densities used in the calculation were
derived from experimental measurements. In this study we take the further step, pioneered in [3], of
using theoretically calculated nucleon densities for the calculation of the OMP, thus removing the need
for experimental nucleon densities. Moreover, in order to account for experimental data at energies
up to 200 MeV, the central part of the OMP must be supplemented with a good quality spin-orbit
(SO) potential. Lastly, while the microscopic OMP gives good qualitative agreement with experimental
data without any phenomenological adjustments, such adjustments are needed if one is to get a more
quantitative agreement [4].

So, in this work we used the microscopic JLM OMP [1], with HFB nucleon densities. Due to energy
limitations of the original JLM OMP, the imaginary part of the interaction was re-�tted in the 0 to 200
MeV energy range, giving a new parametrisation of the absorption part of the interaction of nucleons
within nuclear matter. The use of a complex SO potential with the Scheerbaum form factor [8], along
with global parametrisations of phenomenological normalizations, based on our systematic study , leads
to predicted observables which closely track the experimental data. The calculations are performed using
the codes FLIT [9] and ECIS95 [10].



Figure 1: Calculated (�n � �p)=(�n + �p) ratio (full line) compared with the (N-Z)/A ratio (dashed line)
for 208Pb. Density distributions are from present HFB calculations.

2 Notations.

Let us �rst establish the notations used throughout this work (they are the same as those de�ned in
[1, 11, 12]). The mass operator M�(k;E), which is complex and non local, is de�ned in nuclear matter
and calculated in the framework of the Br�uckner-Hartree-Fock (BHF) approximation, using the Reid
hard core interaction [13] as a realistic bare nucleon-nucleon interaction. The central part of the OMP is
written as:

Uopt(�;E) = V0(�;E) + ��V1(�;E) + i(W0(�;E) + ��W1(�;E)); (1)

where � = (�n � �p)=(�n + �p) is the asymmetry parameter, � is +1 for proton and -1 for neutron
projectiles, and the potentials V0, V1, W0 and W1 are the following:

V0(�;E) = ReM (0)
�

(k(E); E); (2)

V1(�;E) =
~m

m
ReN�(k(E); E); (3)

W0(�;E) =
m

m
ImM (0)

�
(k(E); E); (4)

W1(�;E) =
m

m
ImN�(k(E); E): (5)

Note that k(E) denotes the on-energy-shell approximation, so henceforthM�(E) will be a shorter notation
forM�(k(E); E). The quantities ~m=m andm=m are, respectively, the k-mass and the E-mass representing
the true nonlocality and the true energy dependence of the OMP [14]. Also, according to the prescriptions
in [15, 16], the imaginary part of the OMP has been multiplied by the e�ective mass ~m=m.



For convenience the quantities ReM�(E), ImM�(E), ReN�(E), and ImN�(E) have been parametrised
in [1] as sums of cij�

iEj�1 terms, for incident nucleon energies ranging from 10 to 160 MeV. Another
parametrisation using the same functional form was subsequently published for energies below 10 MeV
[17].

In order to get the above nuclear matter results to apply to �nite nuclei, the improved local density
approximation (LDA)[1] is used:

VILDA(r; E) = (t
p
�)�3

Z
VNM (�(r1); E)

�(r1)
exp(�j~r � ~r0j2=t2

r
)�(r0)d3r0; (6)

where t is the width of the Gaussian used to widen the root mean square radius of the potential, and r1 is
the position at which the interaction is evaluated (r1 can be taken as r, r0, or (r+ r0)=2). Since we know
of no convincing theoretical or phenomenological reasons to favor any one of the above prescriptions for
the position at which the interaction is evaluated, we arbitrarily chose to use the \middle" one: (r+r0)=2.

Figure 2: The neutron OMP for 208Pb calculated between 5 and 195 MeV using the JLM model. The
real part of the OMP is shown in the upper panel while the middle and lower panels show the imaginary
part of the OMP calculated using, respectively, the original JLM parametrisation and our new JLM
parametrisation. Density distributions are from present HFB calculations.

3 Nucleon density radial distributions.

In previous studies using the JLM model [5], the nucleon densities are derived from electron scattering
experiments. The proton density is extracted from the measured charge density of the nucleus by decon-
volution of the proton charge smearing, and the neutron density is taken as the proton density scaled by
a N=Z factor. However, microscopic calculations using the Gogny D1S force [18] in the framework of the



Figure 3: Comparison between the predictions of three prescriptions for evaluation the spin-orbit potential
and experimental results for the 58Ni(p; p)58Ni reaction at 20.4, 65, and 180 MeV. Full lines denote usage
of the Scheerbaum prescription [8], dotted lines denote usage of the M3Y prescription [19], and dashed
lines denote usage of the Dover and Van Giai prescription [20]. Note that the di�erential cross sections
at 65(180) MeV are o�set by a factor of 102(104), and the polarizations are o�set by 1(3).

Hartree-Fock-Bogoliubov method, show that this assumption of a N=Z scaling factor does not hold, as
can be seen in Fig. 1 which shows the radial distribution of the asymmetry parameter �(r). It is obvious
from Fig. 1 that the microscopic calculation o�ers a more realistic picture of the nucleon densities to be
used in both the calculation of the interaction in nuclear matter and in the improved LDA. So for the
rest of this study we will be using microscopic HFB/D1S calculations of the point nucleon densities for
our OMP studies.

4 Limitations of the JLM parametrisation.

As we mentioned above, Jeukene, Lejeune and Mahaux �tted their nuclear matter BHF calculations with
sums of cij�

iEj�1 terms [1]. Thus, the imaginary component of the JLM OMP is parametrised as:

Im(M0(�;E)) =

�
1 +

D

(E � �F )2

�
�1 4X

i;j=1

dij�
iEj�1 (7)

and

Im(N(�;E)) =

�
1 +

F

(E � �F )2

�
�1 4X

i;j=1

fij�
iEj�1; (8)

where E is expressed in MeV, � in fm�3, and the coe�cients dij , D and fij are published in [1] for
10 < E < 160 MeV, and in [17] for E < 10 MeV. �F denotes the Fermi energy which JLM also �tted in



Figure 4: Normalizations for the central part of the neutron OMP. The upper panel shows the normal-
izations of the real part of the OMP and the lower panel shows the normalizations of the imaginary
part of the OMP. The open circles represent the values that give the best �ts to the average resonance
parameters S0 and R', and the other symbols represent the values that give the best �ts to the di�erential
cross sections and polarizations. The lines are closed forms with parameters �tted to the variations of
the normalizations.

[1] (10 < E < 160 MeV) and [17] (E < 10 MeV). The parametrisations used for the imaginary part of the
mass operator exhibit some limitations. First, the parametrisations of Im(M0(�;E)) and Im(N(�;E))
display a discontinuity at 10 MeV, yielding a discontinuity of the volume integral and root mean square
radius at 10 MeV. Moreover, the polynomial functional form used for the �ts does not lend itself well
to extrapolation: if the parameters of [1] are used above 160 MeV the absorption potential becomes
emissive, that is clearly an unphysical artifact of the polynomial extrapolation. Figure 2 (middle panel)
clearly shows the appearance of an emissive potential above 160 MeV at the surface of the nucleus.

In order to solve the problems above, we have re-�tted the Im(M0) and Im(N) potentials using the
same functional forms, getting new values for the dij , D and fij coe�cients. For these �ts, the value of
�F was taken as:

�F (�;E) = f(E)�F
l(�) + (1� f(E))�F

h(�); (9)

where �F
l and �F

h are, respectively, the parametrisations of the Fermi energy in refs. [17] and [1], and
f(E) is:

f(E) =
1

1 + exp(E�E0

aE
)
; (10)

with E0 = 10 MeV and aE = 2 MeV, so that there is a smooth transition between the low and the high
energy behavior of the Fermi energy.

We have put the following constraints on the �ts of Im(M0) and Im(N):



Figure 5: Normalizations for the central part of the proton OMP. The upper panel shows the normaliza-
tions of the real part of the OMP and the lower panel shows the normalizations of the imaginary part
of the OMP. The crosses represent the values that reproduce the volume integrals of [23], and the other
symbols represent the values that give the best �ts to the di�erential cross sections and polarizations.
The line represents the parametrisation of the variations of the normalizations.

(i) Between 0 and 10 MeV the target values for Im(M0) and Im(N) were the values calculated with
the low energy parametrisation of Lejeune [17];

(ii) Between 18 and 130 MeV the target values for Im(M0) and Im(N) were the values calculated
with the parametrisation of JLM [1];

(iii) Between 130 and 200 MeV, the target values for Im(M0) and Im(N) were linearly extrapolated
from their respective values at 130 MeV calculated with the JLM parametrisation [1].

It is important to note that the region between 9 and 19 MeV was left free of constraints so that the
function could \heal" at the discontinuity. The �t was performed on 2500 points in (�;E) space, with
50 values of � ranging from 2� 10�9 to 2� 10�1 fm�3 and 50 values of E ranging from 0.1 MeV to 200
MeV.

This new parametrisation no longer exhibits a discontinuity at 10 MeV, and the lower panel of Fig.
2 shows that the absorption part of the potential is now no longer positive above 150 MeV.

Fig. 2 shows the neutron on 208Pb potential between 5 and 195 MeV, as calculated with the JLM
OMP. As it can be seen, the real potential (upper panel) goes from a volume potential at 5 MeV to a
surface peaked potential at 195 MeV, this transition taking place around 160 MeV. The imaginary optical
potential (lower panel) on the other hand exhibits a transition from surface peaked at 5 MeV to volume
shaped at 195 MeV. This transition occurs at about 40 MeV. More importantly, the imaginary potential
evaluated with our new parametrisation is no longer emissive.
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Figure 6: Comparison between calculated and measured di�erential cross sections (a, b, and c) and
analyzing powers (d and e), for protons incident on 208Pb between 11 and 185 MeV.



Figure 7: Comparison between calculated and measured reaction cross sections, for protons incident on
208Pb.

5 Spin-orbit potential.

In order to faithfully reproduce experimental polarizations, one needs not only a good central potential,
but a good spin-orbit potential as well. However, the nuclear matter approach of JLM is not applicable
in the case of a spin-orbit interaction since a SO interaction involves a derivative in position space; thus
another prescription for the calculation of the SO potential is necessary. Moreover, if this SO potential
is to be used above 100 MeV, it must be complex in order to account for experimental results. Since the
M3Y [19] potential used in several published studies [5, 6, 7] is real, it cannot be expected to work up to
200 MeV. We have evaluated two alternatives prescriptions: the Scheerbaum SO form factor (Eq. 11) [8]
and the Dover and Van Giai SO form factor (Eq. 12) [20]

Uso

n(p)(r) =
1

r

d

dr

�
2

3
�p(n) +

1

3
�n(p)

�
; (11)

and

Uso(r) = (1 + ��(r))�1 1

r

d�

dr
; (12)

where �n(p) is the neutron (proton) radial density, � = �n + �p, and � = 4.89 fm3. Note that the
Scheerbaum prescription yields di�erent SO form factor for neutrons and protons. In order to get a spin
orbit potential, the above form factors have to be multiplied by phenomenological normalizations of the
SO potential depths, �vso and �wso :

V so

n(p)(r) = �vsoU
so

n(p)(r); (13)

W so

n(p)(r) = �wsoU
so

n(p)(r): (14)
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Figure 8: Comparison between calculated and measured di�erential cross sections (a, b, c), and analyzing
power (d), for neutrons incident on 208Pb between 4 and 155 MeV. The full line represent the total elastic
cross section, the dashed line represents the compound elastic cross section, and the dotted line represents
the direct elastic cross section.

We performed a systematic comparison of angular distributions predicted by the three prescription for
the SO potential (M3Y, Dover and Van Giai, Scheerbaum). The Scheerbaum prescription gives an overall



Figure 9: Comparison between calculated and measured total cross sections, for neutrons incident on
208Pb.

better agreement with the experimental data, especially at high energies. Fig. 3 shows an example of
such a comparison in the case of p +58 Ni at 20.4, 65 and 180 MeV. While at lower energies all three
prescriptions yield satisfactory �ts, at 180 MeV the prediction using the Scheerbaum prescription is closer
to experimental data than the other two predictions.

6 Phenomenological normalization parameters.

In the full OMP, eq. 15, several phenomenological potential depth normalizations are present. Also, note
in Eq. 15 the presence of a Coulomb Spin-Orbit term (or Mott Schwinger potential) [21, 22]

U(r) = �v(V0(r) + �V1(r)) + i�w(W0(r) + �W1(r))

+
�h2

2m2c2
~̀:~�(�vsoVso(r) + i�wsoWso(r))

+Vc(r)

+
�h2

2m2c2
(�� a)~̀:~�

1

r

d

dr
Vc(r); (15)

where a = 0 for neutrons and a = 1=2 for protons.
In the central part of the OMP, �v and �w are the potential depth normalizations of the real and

imaginary parts of the OMP, respectively. Previous studies have shown these normalizations to be close
to unity [6, 3], illustrating that �v and �w carry only �ne tuning information for the microscopic central
OMP. On the other hand , in the SO part of the potential, all the energy dependence of the SO potential
is carried in the phenomenological normalizations of the potential depths �vso and �wso .



In order to determine the values of the potential depth normalizations, we allowed them to vary freely
while �tting over 500 individual angular distributions (di�erential cross sections and analyzing powers).
For central potentials, �v and �w exhibit some common features. For both neutron (Fig. 4) and proton
(Fig. 5) projectiles the �v 's are quite constant around 0.96. The �w's for the neutron (Fig. 4) and proton
(Fig. 5) potentials exhibit a plateau for energies in excess of 10-15 MeV, and a sharp decline below, down
to about 0.25 at 1 MeV. There are however some di�erences, the most striking being that the plateau
above 10 MeV lies at �w = 1:05 for neutrons and at �w = 1:25 for protons. Another strong di�erence is
the fact that the neutron normalizations are di�erent depending on whether the target is doubly-magic
or not, while the proton normalizations do not exhibit such di�erences. This interesting e�ect of nuclear
structure on scattering can be seen only at lower energies (E � 15 MeV).

The normalizations of the spin-orbit potential for neutrons and protons are identical. The depth of
the real part of the spin-orbit potential is exponentially decreasing, while the imaginary part decreases
linearly, crossing zero at 20 MeV. We have then expressed the energy variations of the potential depth
normalizations with functional forms, thus getting the global OMPs (one OMP for neutrons and one for
protons) that are going to be used in the next section.

7 Comparison with experimental data.

In this section we show a comparison between experimental data for 208Pb and predictions from our
global JLM OMP. Other comparisons are available on request.

Di�erential cross sections for (p,p) scattering on 208Pb are displayed in Figs. 6 a, b and c. The
agreement between measurements and calculations is generally good across the whole energy range.
At low energies, the di�erential cross sections exhibit a strong damping of their oscillations due to
the proximity of the Coulomb barrier. At energies between 16 MeV and 30 MeV the model seems to
overestimate the elastic cross section at the back angles. At higher energies the experimental elastic cross
section are fairly well accounted for by the calculations up to E=185 MeV. The analyzing powers (Figs.
6d and e) are also well reproduced by the model which also reproduces the damping exhibited by the
polarizations at low energy. The reaction cross section (Fig. 7) is equally well reproduced at energies
ranging from below the Coulomb barrier (10 MeV) to 200 MeV. For neutrons incident on 208Pb, the
comparison between experimental and calculated elastic di�erential cross section shows good agreement
from E = 4 MeV to 155 MeV (Figs. 8 a, b and c). At the lower energies (4 to 10 MeV), the compound
and direct components of the elastic cross section are of comparable in
uence and must both be included
in the calculations in order to reproduce the experiments. At the higher energies (84 to 155 MeV, Fig.
8c) the �t is not so good, probably due to a poor energy resolution which allows for contamination by
inelastic scattering. The polarizations (Fig. 8d) are also accounted for by the model. The total cross
section (Fig. 9) is reproduced with less than 5% of error between E=3 MeV and 150 MeV, beyond which
the error increases to 10%.

In the case of other spherical nuclei (i.e., 40Ca, 90Zr, 93Nb, 116Sn, 120Sn, 208Pb, 209Bi) or quasi-
spherical nuclei (i.e., 54Fe, 56Fe, 58Ni, 60Ni, 63Cu, 65Cu) the agreement between the new JLM model
predictions and experimental data is comparable with that obtained for 208Pb.

To summarize, we have found that the agreement between our calculations and experimental data was
generally very good. However, some problems do remain : for instance, for incident protons in the energy
region ranging from 20 to 40 MeV, the best �t �w values are substantially lower (by about 10-20%) than
the parametrised �w ; resulting in some overestimation of the di�erential cross section at back angles. In
the case of a neutron projectile, the total cross section exhibits two problems: in the 15 to 30 MeV region
the total cross section is often overestimated by as much as 10%, and above 150 MeV the predicted total
cross section can be up to 10% lower than the experimental cross section. That high energy mismatch
of the total cross sections might be explained by the absence of the pion creation channels in the model.
Nevertheless, the overall agreement of our calculations with experimental data can be considered to be
very satisfactory, especially considering the fact that the calculations are performed using one set of
parametrisations that is global and not speci�cally geared to reproducing 208Pb experimental results.



8 Conclusions.

In this work we build an OMP that �xes the limitations of the original microscopic JLMOMP. By re-�tting
the imaginary central potential over a wider energy range and by systematically studying the variations
of the free parameters of the potential, we have constructed an OMP that predicts fairly accurately
the integrated and di�erential cross sections of nucleons incident on spherical or quasi-spherical nuclei.
Moreover, by using the Scheerbaum prescription for the spin-orbit potential, the quality of the �t to
experimental observables was noticeably improved. Keeping in mind its energy (0-200 MeV) and target
deformation limitations (spherical or quasi-spherical nuclei), our JLM global OMP is useful to account
for experimental data over a wide range of projectile energy and targets with good accuracy, making it
suitable for use as a global potential for analyzing experimental data and in nuclear physics applications.
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