AN ENERGY AMPLIFIER FOR CLEANER AND INEXHAUSTIBLE NUCLEAR ENERGY PRODUCTION DRIVEN BY A PARTICLE BEAM ACCELERATOR

C. Gelès, G. Lindecker, P. Mandrillon, C. Roche, C. Rubbia, J.A. Rubio *(CERN, Geneva)*

AN ENERGY AMPLIFIER FOR CLEANER AND INEXHAUSTIBLE NUCLEAR ENERGY PRODUCTION DRIVEN BY A PARTICLE BEAM ACCELERATOR

COMPLEMENT ON COST ANALYSIS

C. Gelès, G. Lindecker, P. Mandrillon, C. Roche, C. Rubbia, J.A. Rubio.

1. Introduction

Two notes (enclosures 1 and 2) have been written on the Cost Analysis of an Energy Amplifier for Cleaner and Inexhaustible Nuclear Energy Production driven by a Particle Beam Accelerator (CERN/AT/ET/INTERNAL NOTE 94-002, dated 26 January 1994 and CERN/AT/ET/INTERNAL NOTE 94-002/ADD, dated 22 February 1994).

These notes have been extensively discussed with experts in energy economics, in particular from the IEPE (Institut d'Economic et de Politique de l'Energie-CNRS, Grenoble). In addition, further information has been received from specialized institutions such as the US Department of Energy.

In the present note we summarize the findings and analysis made in the various papers on the basis of these discussions and information. The calculations have been coordinated by C. Roche and made in collaboration with C. Gelès, G. Lindecker, P. Mandrillon, C. Rubbia and J.A. Rubio.

In addition we have calculated a set of figures giving a "low" and a "high" limit in costs to be compared with the previous values which we still consider as the "best" estimate.

2. Calculations

Remarks have been made on the hypotheses used in the previous notes. In addition we have been provided with further and very detailed information, from the Department of Energy of the United States, on the models they used to calculate the cost of conventional facilities^{*}.

The remarks and further information were related to:

¹ Technical Reference Book for The Energy Economic Data Base Program EEDB Phase IX (1988) and An Analysis of Nuclear Plant Operating Costs (1991).

a) The largest uncertainty about the cost of the "Tank" of the Amplifier. Therefore we doubled this cost for the high limit. However we reduced the cost of the prototype of the Amplifier system down by 40 M\$ in the low limit.

b) The conversion factor from thermal to electric power of 0.43 applies to high temperatures and Helium-cooling. Therefore we considered an option with a factor of 0.35 (but with a lower temperature and water-cooling) for the high limit. We normalized all calculations to obtain the same output in electrical power with corresponding adaptations of the cost of both the Amplifier and the Conventional systems.

c) The estimated life-time of 35 years. This figure is based on our experience of the potential life-time of accelerators (more **than** 40 **years**). However 30 years is the figure commonly used for classical nuclear plants. Therefore we took a life-time of 30 years for the high limit and of 40 years in the low limit.

d) The number of staff involved in the operation. It is higher in the classical nuclear plants than in our estimates but its cost per man-year is significantly lower. Therefore we considered a higher number of staff, leading to a cost 50% higher, for the high limit and a lower man-year cost, 50 k\$ instead of 80 k\$, for the low limit.

e) The cost of conventional facilities appears to be lower by about 15% in the examples given by the DOE when compared to our previous calculations. Therefore we did not change them for the high limit but assumed a reduction of 15% for the low limit.

f) According to some of the experts consulted, the cost of fuel and maintenance may have been overestimated. Therefore we considered a cost lower by a third for the low limit but we did not change them for the high limit.

3. Results

We indicate, as a reminder in Annexes 1 and 2, the calculations, used for the best estimate, of the cost of the Amplifier (prototype and series production) and of the operation for the "basic" unit of 130 MWe and extrapolations for units of 130,260,650 and 1300 MWe.

In Annex 3, Tables 1,2,3 and 4 give the total costs of construction and the yearly financial and operating costs as well as the cost per kilowatt hour produced by plants based on the Energy Amplifier and generating 130,260, 650 and 1300 MWe for each approach considered above: best estimate, low limit, high limit. The graph in Annex 4 shows a comparison of the cost of the kWhe for our different options with other sources of electricity (gas-fired, coal, nuclear plants). This is a development of the graph given in the first note which contained error bars for the cost of a kWhe: these error bars have been now replaced by our estimated low and high limits.

4. Conclusions

We consider that the estimates given in the previous notes are confirmed. These estimates correspond to our present knowledge. Any further analysis of the direct costs of the Energy Amplifier beyond crosschecking our present calculations and makes sense only after a detailed design study is completed. Such a cross-checking is planned and should be undertaken in collaboration with the IEPE.

We should now concentrate our efforts on the analysis of the External Costs and the Impact on Society of the Energy Amplifier. We can mention the protection of the environment, the waste management (in particular Plutonium), the employment, the subsidies and taxes related to the production of energy. A comparison of the efficiency of the Energy Amplifier with other sources of energy, on a long-term basis integrating the potential world needs, should be undertaken. In particular a detailed frame should be defined to take into account the more relevant socio-economic concerns mentioned above and related parameters to measure efficiency should be more precisely defined. We plan to establish a collaboration with specialized institutions (again such as the IEPE) to achieve this essential chapter of the economic study of the Energy Amplifier.

Amex 1:	 Table 1: Cost of Prototype Table 2 Cost of series production
Amex 2:	- Operating Costs
Annex 3:	- Table 1: Cost of Energy Amplifiers, Best Estimate

- Table 2: Cost of Energy Amplifiers, Low Limit
- Table 3: Cost of Energy Amplifiers, High Limit
- Table 4: Cost of Energy Amplifiers, Summary of Approaches
- Annex 4: Graph: Cost/kWhe for options of Energy transformation

ANNEX 1

MUS\$	TABLE 1: COST OF PROTOTYPE (130 MWe for 300 MWt)
	(Best Estimate)
60	Booster Ring
25	Intermediate Injector
10	5
5 5	
20	
20	Installation
125	Total Accelerate]
50	Amplifier Tank (hardware)
15	Installation
20	
20	Connections between Systems
105	Total Tanl
45	Personnel (560 man-years for 4 years
	reisonner (500 man years for 1 years
55	Contingency (20%
330	GRAND TOTAL ENERGY AMPLIFIER (EA
	Booster Ring Intermediate Injector Ion Source Injector Beam Transport Control Room, equipment for measurements Installation Total Accelerate] Amplifier Tank (hardware) Installation Waste Transformation Connections between Systems Total Tanl Personnel (560 man-years for 4 years

The costs of the prototype do not include land and premises. It is assumed that the region hosting the project (or another partner) will provide for them. It could be envisaged to build the prototype close to an existing plant in order to study how to connect the amplifier to the "conventional" part of an existing plant.

TABLE 2: COST OF OPTIONS IF SERIES PRODUCTION (at least 10 units)	MUSS
Industrialization of one unit of 130 MWe: 45% of Prototype	150
Stack of 2 units: -5% reduction of unit cost	290
Stack of 5 units: -7.5% reduction of unit cost	700
Stack of 10 units: -15% reduction of unit cost	1270

ANNEX 2

OPERATING COSTS (Best Estimate)

1, Yearly Operating Costs for a 130 MWe Plant are estimated as follows:

Staff to operate the accelerator: Staff to operate the "tank": Staff to operate the conventional part: Management and administration	15 persons (2 persons on shift) 2 persons on shift) 5 persons on shift)
Costs of 75 persons	5:	6 M\$
Fuel (including re	processing):	3 M\$
Other Consumable	es:	3 M\$
Other Maintenanc	e costs:	4 M\$
Total	Operating C	osts: 16 M\$

2. Yearly Operating Costs for the other options are estimated as follows:

Our model is that costs of fuel and other consumables are proportional to the energy, that personnel costs evolve from one value to the other as the square root of the energy and that other maintenance costs evolve as power 0.8 of the energy.

Option (MWe)	130	260	650	1300
Personnel	6	9	13.5	19
Fuel & Consumables	6	12	30	60
Other Maintenance	4	7	14.5	25
TOTAL COSTS (MS)	16	28	58	104

Table 1: Best Estimate

M We	130	260	650	1300
Land and preparation, Buildings, Safety, radiation protection, etc. Mechanical systems (Turbines, cooling, heat exchange, etc.)	70	120	260	'450
Electrical systems (cabling, transformers, etc.)	70	130	280	490
General expenses	50	80	160	250
deneral expenses	40	70	1.50	240
Total Conventional systems	230	400	850	1430
Total Amplifier (Prototype at 330 MS)	150	290	700	1270
GRAND TOTAL	380	690	1550	2700
Annual Financial costs (35 years life-time, 6% interest rate) Annual Operating costs (including fuel) -(80 k\$/my) Contingency+Possible unforeseen Recurrent costs	26 16 4	48 28 8	107 58 17	187 104 29
TOTAL ANNUAL COSTS	46	84	182	320
GWh/year (conversion 0.43, 80% operation)	911	1822	4555	9110
US \$ ct/KWh	5.0	4.6	4.0	3.5

199

Table 2 Low Limit

M We	230	260	650	1300
and and preparation, Buildings, Safety, radiation protection, etc.	60	100	220	380
vlechanical systems (Turbines, cooling, heat exchange, etc.)	60	110	240	420
Electrical systems (cabling, transformers, etc.)	45	70	135	210
Ceneral expenses	3s	60	125	200
Total Conventional systems (Best Estimate minus 15%)	200	340	720	1210
Total Amplifier (prototype at 290 MS)	130	250	600	1110
GRAND TOTAL	330	590	1320	2320
Annual Financial costs (40 years life-time, 6% interest rate)	22	40	8a	155
Annual Operating costs (incl. fuel) -(50 k\$/my, M&O lower by 1/3)-	13	24	47	85
Contingency+Possible unforeseen Recurrent costs	4	7	14	24
TOTAL ANNUAL COSTS	39	71	149	264
GWh/year (conversion 0.43, 80% operation)	911	1822	45s5	9110
US \$ ct/KWh	4.3	3.9	3.3	2.9

Table 3: High Limit


MWe	130	260	650	1300
and and preparation, Buildings, Safety, radiation protection, etc.	80	140	310	530
fechanical systems (Turbines, cooling, heat exchange, etc.)"	60	120	270	480
lectrical systems (cabling, transformers, etc.)	60	90	190	290
eneral expenses	40	70	150	240
Total Conventional systems (Lower Temp., water, 23% more MWth)	240	420	920	1540
Total Amplifier (Prototype at 450 MS)	200	380	930	1700
GRAND TOTAL	440	800	1850	3240
	32	58	135	236
Innual Financial costs (30 years ii fe-time, 6'% interest rate)	32 19	32	65	113
nnual Operating costs (including fuel) -Staff cost 50% higher-	5	52	20	35
contingency+Possible unforeseen Recurrent costs	3	9	20	35
TOTAL ANNUAL COSTS	56	99	220	384
Wh/year (conversion 0.35 but for 23% more MWth, 80% operation)	911	1822	4555	9110
Uss ct/KWh	6.1	5.4	4.8	.s.2

• Although they correspond to the overall High Limit, the figures in this specific line are lower than the best estimate because we consider water-cooing at a lower temperature. This reduces significantly the cost of the turbines and associated equipment.

Table 4: Summary, Low Limit, High Limit, Best Estimate

MWe	130		260			650			1300			
	Low	Best	High	Low	Best	High	Low	Best	High	Low	Best	High
Total Conventional systems	200	230¦	240	340	400	420	720	850	920	1210	1430	1540
Total Amplifier	130	150	200	250	290	380	600	700	930	1110	1270	1700
GRAND TOTAL	330	380	440	590	690	800	1320	1550	1850 I	2320	2700	3240 I
Annual Financial costs Annual Operating costs	22 13 4	16	1	40 24 7	28	58 32 9	47	58	135	85	187 104 29	236 113 35
Contingency TOTAL ANNUAL COSTS	39		1	I		1		17 182 I	20 1 2 2 0 I	ļ		!
GWh/year	911	1 911	1 911	1822	1 1822	1822	4555	14555	14555	9110	I 911(019110
Uss ct/KWh	4.3	5.0	6.1	3.9	4.6 I	5.4 [3.3	4.0	4.8	2.9	, 3.5	4.2

ANNEX 4: COST OF ELECTRICAL KWH FOR DIFFERENT OPTIONS OF ENERGY TRANSFORMATION (Best Calculated, Optimistic and Pessimistic Options for the Amplifier Plant)

